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Abstract— An auditory modality brain computer interface
(BCI) is a novel and interesting paradigm in neurotechnology
applications. The paper presents a concept of auditory steady
state responses (ASSR) utilization for the novel BCI paradigm.
Two EEG feature extraction approaches based on a bandpass
filtering and an AR spectrum estimation are tested together
with two classification schemes in order to validate the proposed
auditory BCI paradigm. The resulting good classification scores
of users intentional choices, of attending or not to the presented
stimuli, support the hypothesis of the ASSR stimuli validity for
a solid BCI paradigm.

I. INTRODUCTION

Brain computer/machine interface (BCI/BMI) is a device
enabling to create an additional or independent communica-
tion channel between the brain/mind and a computer/machine
without an involvement of peripheral nervous or muscular
systems [1]–[3]. Non-invasive BCI is a challenging paradigm
to achieve this goal. BCI tasks can be classified into two
major categories: independent and dependent [2]. It has been
known that the latter one can provide more commands and
can be implemented in real-world settings. A number of stud-
ies in dependent BCI paradigms use visual stimuli and the
corresponding brain responses. However, the use of auditory
modality in BCI has several advantages for which belong:
simple stimuli delivery via headphones or loudspeakers; no
necessity for the user to direct a head toward the sound
sources; minimal user’s distraction; possible embedding of
auditory stimuli within music; no evidence of possible danger
of causing seizures; a possibility to utilize the paradigm
for locked-in patients without any remaining muscle ac-
tivity, vision or possibility to learn a movement imagery
paradigm [2]. Auditory steady-state response (ASSR) is an
established tool in objective hearing levels estimation [4].
ASSR is evoked by the periodic modulation, or turning
ON and OFF of a tone [5]. The neural response is a
brain potential that closely follows the time course of the
amplitude modulation and it can be detected objectively at
intensity levels close to behavioral threshold. In order to
quantify brain responses evoked by attended ASSR stimuli
we compare two feature extraction and two classification
strategies. There have been reported studies on auditory
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(a) 35 Hz amplitude modulation.
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(b) 60 Hz amplitude modulation.

Fig. 1: The stimuli signals designed to create ASSR response
captured later in EEG.

modality based BCIs [6], [7], however, unlike the visual
based paradigms, detailed stimulus types, effectiveness and
user-friendly designs to achieve practical applications are still
open questions.

The objective of this paper is to confirm a hypothesis
that the ASSR based BCI paradigm is a satisfactory concept
based on the offline testing results and the possibility to
adopt to various users. The results presented at the end of the
paper together with discussion corroborate the ASSR stimuli
validity hypothesis.

II. METHODS

The EEG experiments were conducted in the Department
of Electrical and Electronic Engineering, Tokyo University
of Agriculture and Technology, Tokyo, Japan, in accordance
with the local institutional ethical committee guidelines. In
the present study ten healthy male subjects labeled S1 to
S10, age 22−30 with mean 24 years old, were fully informed
about the experimental procedure and they agreed voluntarily
to participate by signing subject consent forms. All subjects
had normal hearing levels. The recorded EEG data were next
anonymized to protect subjects’ privacy. The experimental
procedure and data processing steps are described below.

A. EEG Measurement Procedure

For the ASSR experiments we use two types of stimuli.
Both of them are based on a sinusoidal carrier tone with
frequency of 500 Hz. To generate the ASSR response ob-
servable later in EEG the carrier tone is amplitude modulated
with 35 Hz and 60 Hz sine waves separately as illustrated
in Figures 1a and 1b. The modulated signal with 35 Hz
(stimulus L) and the modulated signal with 60 Hz (stimulus
R) are presented to the subjects through left and right
earphone channels separately. During EEG measurement, the
subjects sit in an armchair while focusing their sites on a
computer display with a fixation mark. The subjects have
been instructed to listen to two stimuli which are delivered
to left and right earphones sequentially together with visual
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Fig. 2: Experimental procedure protocol.

instructions as illustrated in Figure 2. The detailed experi-
mental procedure steps are as follows:

Step 1: Subject is instructed to fixate eyes on a cross in a
computer display in front of them for 1.5 seconds.

Step 2: A direction of stimulus is presented on the display
in form of an arrow instructing the subject which
direction of ASSR stimuli in next step to attend
(left or right). The instructions with directions to
attend are randimized.

Step 3: After 500 ms break, the ASSR stimulus is played
via the single earphone channel (left or right).
Subject attends to the modulated tone only if the
instructed direction (displayed arrow) matches the
earphone channel (left or right). Otherwise the
subject shall ignore the stimulus.

Our experimental hypothesis is that an observed ASSR
response corresponding to attended class of L and R stimuli
should be reflected in EEG features. For a reference, we also
extend the experiment with a third simple stimulus in form
of a 100 Hz sinusoidal “through-bass” sound which is given
to the subject in the Step 3. In the reference experiment with
the through-bass, the subject attends to it when the ASSR
stimulus shall be ignored (the instruction arrow left/right
direction and the playback earphone channel mismatch case).
The through-bass sound is played through the left and right
channels of the earphone with the same volume level. The
sound pressure level for the ASSR stimulus is about −14 dB.
The protocol is repeated 100 times for each subject resulting
with 50 trials for each of L and R classes. The length of each
single trial is 10 seconds.

The EEG signals are recorded with 12 electrodes located
on T7, C5, C3, C1, Cz, C2, C4, C6, T8, TP7, CPz, and
TP8 as in international 10 − 10 EEG recording system. A
ground electrode is located on a forehead and a reference
is attached to an earlobe (A1 position). The EEG signals
are amplified and bandpass filtered in a frequency range
of 0.08 − 100 Hz using an amplifier MEG-6116 (NIHON
KOHDEN). Moreover, we apply the hardware notch filter
at 50 Hz to remove electrical power noise. The amplified
signals are next digitized with 512 Hz sampling frequency by
an A/D converter AIO-163202F-PE (CONTEC) and recorded
on a computer hard disk using Data Acquisition Toolbox

35 60

Frequency [Hz]

35 60

Frequency [Hz]

Fig. 3: DFT amplitude spectra for the EEG channel Cz of
the S5 subject’s signals averaged over 50 trials. The solid (L
class) and the dashed (R class) lines represent EEG spectra
for both ASSR responses respectively. The instruction given
to the subject in the right panel was to attend to R class and
in the left panel to L class.

in MATLAB. Discrete Fourier transform (DFT) amplitude
spectra averages over trials for a Cz channel (in later
discussed classification results the single trial EEG signals
are used) derived from a single subject EEG are presented
in Figure 3. This figure visualizes strong DFT peaks related
to attended ASSR response frequencies at 35 and 60 Hz
respectively.

B. Classification Procedure

Responses to presented stimuli in EEG signals are tested
with utilization of two feature extraction and two classifica-
tion procedures to verify the usability of ASSR paradigm for
BCI purposes, as described in following sections.

1) Feature extraction: We obtain each feature vector from
an observed signal by bandpass filtering and autoregressive
(AR) spectrum estimation, respectively. In this section, let
xn(t, i) be the recorded signal of the i-th channel from the
n-th trial where i represents an index of channel for i =
1, . . . , 12, t stands for a time index of a discrete signal for
t = 1, . . . , 5120, and n = 1, . . . , 100, and let yn ∈ {L, R}
be the class label of the n-th trial.

a) Bandpass filtering: We apply two Butterworth band-
pass filters F1 and F2 with pass-band of 35−fb to 35+fb Hz
and 60−fb to 60+fb Hz respectively, where 2f

b
represents

the width of the pass-band of the chosen order-two filters.
Then, we obtain two filtered signals from each channel and
the energy of these signals as

pj
n(i) =

2560∑
t=1

{Fj(xn(t, i))}2, j = 1, 2, (1)

qj
n(i) =

5120∑
t=2561

{Fj(xn(t, i))}2, j = 1, 2. (2)

The feature vector is defined as

zn =[p1
n(1), . . . , p1

n(12), p2
n(1), . . . , p2

n(12),

q1
n(1), . . . , q1

n(12), q2
n(1), . . . , q2

n(12)]>.
(3)

The labeled data are described in {zn, yn}100
n=1 ⊂ R48 ×

{L, R}. The norm of the feature vector is normalized to 1.
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b) AR spectrum estimation: We define AR models as;

xn(t, i) =−
M∑

k=1

rn(k, i)xn(t− k, i) + vn(t, i),

t = M + 1, . . . , 2560,

(4)

xn(t, i) =−
M∑

k=1

sn(k, i)xn(t− k, i) + wn(t, i),

t = 2561 + M, . . . , 5120,

(5)

where (4) and (5) are models in periods of playing stim-
ulus L and stimulus R, respectively, M is an AR model
order, rn(k, i) and sn(k, i) are coefficients of AR models,
and vn(t, i) and wn(t, i) are white noises with zero time
averages. From observation signal, xn(t, i), we estimate the
coefficients of AR models by the Yule-Walker method [8].
A feature vector, zn, consists of the estimated coefficient as:

zn = [rn(1, 1), . . . , rn(M, 1), rn(1, 2), . . . , rn(M, 2),
. . . , rn(1, 12), . . . , rn(M, 12),
sn(1, 1), . . . , sn(M, 1), sn(1, 2), . . . , sn(M, 2),

. . . , sn(1, 12), . . . , sn(M, 12)]>. (6)

The labeled data is described in {zn, yn}100
n=1 ∈ R24M ×

{L, R}. Moreover, the norm of the feature vector is normal-
ized to 1.

2) Classification: We adopt two classification methods: (i)
principal component analysis (PCA) and linear discriminant
analysis (LDA) [9]; (ii) linear support vector machine (SVM)
with soft-margin [10]. Those are linear classification methods
with a discriminant function,

f(z) =
{

L (w>z − b ≥ 0)
R (w>z − b < 0) , (7)

where parameters (w, b) are replaced by (wLDA, bLDA) or
(wSVM, bSVM) obtained as follows. We define a set of the
samples for learning as zn ∈ RD where the sets of indexes
corresponding to L and R classes given as ΩL = {n|yn =
L} and ΩR = {n|yn = R} and D denotes the dimension of
a sample vector. And we assume an unlabeled feature vector
as z ∈ RD.

a) PCA and LDA: PCA is performed for the both
classes, so a set of eigenvectors u1, . . . ur corresponds to the
largest r eigenvalues of R = 1

|ΩL|+|ΩR|
∑

n∈ΩL∪ΩR
znz>n .

All sample vectors and test vector are transformed using
a matrix of U = [u1|u2| . . . |ur] ∈ RD×r such as ẑn =
U>zn and ẑ = U>z. Next, we classify the test sample by
using classification function based on LDA. Let mean vectors
be

mL =
1
|ΩL|

∑
n∈ΩL

ẑn, mR =
1
|ΩR|

∑
n∈ΩR

ẑn, (8)

and the scatter matrix be

Sw =
1
|ΩL|

∑
n∈ΩL

(ẑn −mL)(ẑn −mL)>

+
1
|ΩR|

∑
n∈ΩR

(ẑn −mR)(ẑn −mR)>. (9)

Then the parameters of the classifier are given by wLDA =
Uŵ and bLDA = 1

2ŵ>(mL +mR), where ŵ = S−1
w (mL−

mR).
b) Linear SVM: The parameters wSVM and bSVM are

obtained by solving the convex quadratic optimization prob-
lem of SVM [10]. Then a parameter for soft-margin is set to
the problem as C. We use a package SVMlight [11] to solve
the problem.

III. RESULTS

The very encouraging subject responses recognition results
ranging from 62% to even 100% of presented experimental
approach are presented in Table I, where classification ac-
curacy and optimal parameters found for each subject are
summarized. The parameters are chosen in {0.5, 1, . . . , 5}
for a bandwidth, fb, {1, 2, . . . , 10} for an order of AR model,
{1, 2, . . . , 48} for a rank of PCA in bandpass filtering, and
{1, 2, . . . , min(12M, 99)} for a rank of PCA in AR spectrum
estimation, and {101, 101.2, . . . , 105} for soft-margin, C, of
the SVM. The accuracy has been obtained by leave-one-out
cross validation (L-CV) method. Because the results differ
for the subjects, it is not clear whether the choice of the
stimulus with through-bass has been effective.

The relations between averaged classification accuracy
and parameters for each procedure are shown in Fig 4.
Trends in a function of the parameters can be observed, for
example, the parameter of the soft-margin, C, performs with
better accuracy for C > 102 comparing to its lower values.
However the results differ among the participants showing
the sensitivity to subject variability.

The presented approach and very encouraging results
based on the ten subjects sample are a step forward in
creation of the new user friendly, auditory stimuli based
BCIs. We have shown that the ASSR stimuli based BCI
paradigm allows the users to switch their attention to one
of the presented modulated tones and to generate a resulting
stronger following response in EEG possible to rank with
discussed in this paper feature extraction and classification
approach.

We plan further multi-subject experimental trials to exam-
ine the through-bass inclusion on subjects performance as
well to further validate the proposed BCI paradigm in an
online multi-command application.
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TABLE I: Classification accuracy and optimal parameters given by L-CV. Upper and lower columns of each table show the
results of experiment “without” and “with” through-bass, respectively. The columns labeled “Soft-margin” show the value
of log10(C), where C is the parameter for soft-margin.

(a) Feature extraction: bandpass filtering, classifier: PCA and LDA

Subject
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Acc. [%] 66 82 76 99 79 84 66 75 74 71
fb [Hz] 5.0 2.5 5.0 0.5 3.5 4.0 0.5 2.0 3.5 3.5

Rank 27 18 18 31 7 21 14 37 20 34
Acc. [%] 67 76 66 100 67 93 62 61 70 84
fb [Hz] 5.0 4.0 2.0 0.5 2.5 5.0 1.0 4.5 1.5 3.5

Rank 22 41 5 31 7 14 13 20 26 21

(b) Feature extraction: bandpass filtering, classifier: linear SVM

Subject
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Acc. [%] 68 83 79 97 84 82 68 74 72 82
fb [Hz] 4.5 1.0 4.5 1.5 5.0 4.5 1.0 2.5 3.5 5.0

Soft-margin 3.4 2.8 2.4 1.0 1.0 1.0 3.0 4.0 4.2 3.4
Acc. [%] 65 74 65 99 64 94 63 62 71 90
fb [Hz] 4.0 2.5 2.0 0.5 1.0 5.0 1.5 5.0 3.0 4.5

Soft-margin 4.0 3.0 2.0 1.0 1.0 1.6 2.6 1.0 3.6 2.6

(c) Feature extraction: AR spectrum estimation, classifier: PCA and LDA

Subject
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Acc. [%] 86 90 74 97 96 65 74 87 81 90
AR order 4 8 2 6 2 2 3 7 4 7

Rank 26 91 13 3 12 8 44 57 96 72
Acc. [%] 67 74 72 100 70 82 74 73 72 95
AR order 7 6 8 2 4 3 4 3 2 7

Rank 62 20 21 3 20 32 37 16 26 22

(d) Feature extraction: AR spectrum estimation, classifier: linear SVM

Subject
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Acc. [%] 83 89 75 96 98 69 74 86 79 87
AR order 7 9 3 2 2 3 2 10 4 6

Soft-margin 2.4 2.6 3.4 1.0 2.6 5.0 3.0 1.8 2.4 1.6
Acc. [%] 68 73 72 100 68 85 74 74 76 93
AR order 2 6 9 2 2 8 3 8 2 6

Soft-margin 3.4 2.6 2.2 1.0 2.4 2.6 3.8 1.2 3.2 2.8
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Fig. 4: Relations between classification accuracy and classification parameters.
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