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Abstract— Brain-computer interfaces based on event-related
potentials face a trade-off between the speed and accuracy of the
system, as both depend on the number of iterations. Increasing
the number of iterations leads to a higher accuracy but reduces
the speed of the system. This trade-off is generally dealt with by
finding a fixed number of iterations that give a good result on
the calibration data. We show here that this method is sub
optimal and increases the performance significantly in only
one out of five datasets. Several alternative methods have been
described in literature, and we test the generalization of four of
them. One method, called rank diff, significantly increased the
performance over all datasets. These findings are important,
as they show that 1) one should be cautious when reporting
the potential performance of a BCI based on post-hoc offline
performance curves and 2) simple methods are available that
do boost performance.

I. INTRODUCTION

Recent advances in brain-computer interfaces (BCIs) have
resulted in both applications and methods that come closer
to practical use [1]. BCI systems allow a person to control
a device without the use of the brain’s normal efferent
pathways. In other words, by producing recognizable brain-
states a person can convey her/his intention directly to a
device. This is of particular interest for people with severe
motor disabilities, but can also prove useful in other settings
[2].

BCI systems based on event-related potentials (ERPs)
have proven particularly useful, both for healthy users and
end-users with locked-in syndrome. They have shown to
convey more bits per minute and work for a wider range
of subjects with higher accuracy than other brain states,
such as motor imagery. The principal idea of any ERP BCI
is to stimulate the user with 2 or more different stimuli.
The user focuses on one of these stimuli, called the target.
This target is generally less frequent than the rest, either
by design or by the larger number of non-focused stimuli.
The focused and non-focused stimuli elicit different brain
patterns. This can be detected and exploited by the BCI.
The most convenient way to pick up this signal is through
non-invasive electroencephalography (EEG).

ERP BCIs are most widely used for communication and
were originally introduced by [3]. Since then, several varia-
tions have been proposed changing the interface [4] or the
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modality [5], [6]. The original idea, however, remains; the
user communicates by focusing attention to one of several
offered options and thereby conveys her/his intention to the
BCI.

Generally, a single selection is referred to as a trial.
It contains several elements which are important to the
estimation of the efficiency of the system: Preparation –
some time is given to the user to prepare for a new round
of stimulation and to determine the next target. Stimulation
– described below. Result – after the stimulation, the BCI
selects the most probable target and informs the user of
this decision. Another important factor is the number of
selections needed for correcting an error. All these should
be taken into account when estimating the efficiency in a
realistic manner.

The stimulation is repeated several times for each option
in order to improve the signal-to-noise ratio of the EEG
signal, and thereby the accuracy of the decision. Gener-
ally, one round (iteration) of stimulation of each option is
performed before proceeding to the next iteration. Several
such iterations make up the stimulation part of a trial. As
each additional iteration prolongs the length of a trial, there
exists a trade-off between accuracy and speed. Typically, this
trade-off is not dealt with during online BCI use. Rather, an
’optimal’ number of iterations is fixed during post-hoc offline
analyses. Based on this number the potential speed of the
BCI is reported, but only rarely is a method for reaching
this ’optimal’ number incorporated.

The challenge is thus to optimize the number of iterations.
The simplest way to do this is by learning the optimal
number of iterations on the calibration data and use this
online. As performance of BCI is variable over time, more
dynamic methods have been proposed [7], [8], [9], [10]. They
stop the stimulation in a trial, based on the classification
scores it has seen so far. Any such method should be
robust and subject-independent. Alternatively, it should be
possible to train it with few data. In many BCI systems the
Preparation and Result part of a trial – collectively called
overhead – are considerable. Thus, it often pays off for a
stopping method to be conservative; i.e. it may cost more
time to correct an error than is gained by stopping early.

Several of the methods proposed in literature have been
tested here on different datasets. In summary, the results rec-
ommend to do early stopping, as it can significantly increase
the performance for different types of BCI paradigms. When
nothing is known about the user and paradigm, a conservative
approach is recommended. Simply setting a fixed, lower
threshold only increases performance significantly for one
dataset.
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TABLE I
DATA DESCRIPTION. N REFERS TO THE NUMBER OF PARTICIPANTS IN

THE DATASET. Sel. levels REFERS TO THE NUMBER OF SELECTIONS

NEEDED FOR WRITING A SINGLE SYMBOL. Max It. DESCRIBES THE

MAXIMUM NUMBER OF ITERATIONS PER TRIAL THAT WERE AVAILABLE

IN THE DATASET.

Dataset N Modality Sel. levels Nr. Classes Max It.
AMUSE 16 Auditory 2 6 15
Hex-o-spell 13 Visual 2 6 10
Center 13 Visual 2 6 10
Cake 13 Visual 2 6 10
PASS2D 10 Auditory 1 9 11

II. METHODS

Both the methods and datasets used for this study are
shortly described here, but we refer to the original work for
the details.

A. Data description

Data were taken from two auditory experimental BCI
paradigms, AMUSE [7], and PASS2D [11] and three visual
paradigms [12], [4]. A data description can be found in Table
I. All experiments consisted of a calibration phase and an
online phase. During calibration, the user did not receive any
feedback on her/his performance. In all cases, the participants
used the BCI in the online phase for writing text in copy-
spelling mode. AMUSE and the visual paradigms used a two
step selection process. PASS2D uses a single selection and
relies heavily on the applications intelligence. For details on
the different paradigms we refer to the cited papers. The
results presented here are based on cross validation on the
calibration data.

B. Description for dynamic stopping methods

Due to the large overhead of most of the paradigms in
our dataset, the most conservative threshold reported in the
original work was used for each method. For all methods,
the minimum number of iterations was set to three.

Fixed optimal. The simplest way of ’optimizing’ the BCI
is by estimating an optimal, but fixed, number of iterations on
the calibration data. In fact, this resembles what is usually
done in post-hoc offline analyzes as described before. As
the number of iterations used can be set in virtually any BCI
system, this method requires no implementation effort.

Rank diff . Rank-diff [7] bases its threshold on the dif-
ference p of the classifier medians of the two most likely
classes. A larger p means a better separation of the class
medians, and thus more confidence in a decision. Rank-diff
finds a threshold for each iteration under the assumption that
the same p becomes more reliable with an increasing number
of iterations. The iteration threshold is set to be greater than
the highest p resulting in a false positive. It thus avoids any
false positives. A trade-off parameter R can be used to set
the distance from this minimal threshold [7]. Rank-diff was
designed for the AMUSE paradigm, but the dataset used here
was not used to find good parameters.

Lenhardt. This method was originally proposed for a
visual speller [8]. For each trial, the first iteration where a
correct selection can be made is taken. For each class, the
classification scores up to that iteration are summed. The
vector containing these sums is normalized and summed to
give a single value called ’intensity’. The final threshold is
obtained by averaging intensities over all trials and partici-
pants. Online, the trial is stopped when the current intensity
falls below this threshold. The original work proposes a sec-
ond threshold for more robustness. Here it is not incorporated
as finding the proper value is not feasible with a low number
of trials.

Höhne. This method was proposed for an auditory speller
paradigm [13]. In this simple approach, a one-sided t-test
with unequal variances is applied for each class against all
other classes. Thus, it is tested whether the distribution of
classifier outputs of a specific class significantly deviates
from the other classes. Each online trial is stopped as soon as
a predefined level of significance is exceeded. This subject-
specific significance threshold is found by simulation over
the calibration data.

Liu. A very simple approach was taken in [9], where the
average distance from the SVM hyperplane was calculated
for target subtrials from the calibration data. Online, the trial
is stopped as soon as the sum of classification scores up to
that iteration is larger than N times the threshold for one of
the classes.

C. Preprocessing

All EEG datasets were reduced to 27 trials – with varying
numbers of subtrials –, low-pass filtered with a cut-off
frequency at 45 Hz and resampled to 100 Hz. Epochs were
created from 150 ms pre-stimulus to 800 ms post-stimulus
and baselined on the pre-stimulus interval. Discriminative
intervals were selected by a heuristic [14] within the cross-
validation, and the average potential in these intervals for all
channels (around 60) served as the feature vector for training
and applying the classifier for that fold.

As done in the original implementation [9], we averaged
three trials in the time domain for Liu during the online
phase. For all other methods, single subtrial classification
was performed.

D. Classification and validation

Results reported here come from leave-one-trial-out cross-
validation on each of the five datasets. Parameters such
as discriminative interval, classifier weights and stopping
threshold were estimated on the training set only. As
Lenhardt’s threshold is estimated over multiple participants,
the results of each cross-validation fold was pooled over
participants and a fold-specific threshold was calculated.

Classification was done using an LDA classifier, regular-
ized by shrinkage of the covariance matrix [14].

E. Metric

For the evaluation of the effect of the early stopping
methods, a metric is needed that respects the speed-accuracy
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Fig. 1. Average number of iterations. Results are averaged over participants,
dataset and cross-validation fold. Error bars represent the SEM. The dotted,
black bar represents the minimal number of iterations that was enforced.

trade-off under consideration of the overhead. While the ITR
is a reasonable performance measure in general context, for
spelling applications it is more straightforward and realistic
to use the actual symbols per minute (SPM). In BCI spellers,
the handling of errors is explicitly done by the use of a
backspace symbol. Even though during offline classification
no actual deletion of misspelled symbols takes place, it is
possible to approximate the SPM. For single level interfaces,
a correct selection counts as +1 symbol. An erroneous
selection counts as -1 symbol, to account for the added
effort of performing a backspace. This leads to the following
formula:

symbols per minute = 60 / time per symbol (1)

E = Percent correct− Percent erroneous; (2)

SPM = symbols per minute ∗ E; (3)

Time per symbol [s] includes all the necessary overhead,
as discussed in the introduction.

For the two step selection process in the AMUSE
paradigm and all three visual spellers, there is another
case that has to be considered. Errors can be made on the
first level (group selection) and on the second level (single
symbol selection). When the group selection went wrong,
the second level contains a ’backdoor’, which cancels the
previous selection. As no symbol is selected, it counts as
a 0 symbol selection (for term E). The Percent correct
is now interpreted as correct selection in both levels and
Percent erroneous as erroneous selection in the second
level. Note that the simplifying assumption is – as in the
classical ITR formula – that the accuracy is the same for
each symbol.

As the PASS2D paradigm relies to a large extent on ap-
plication intelligence, calculation of the SPM is not possible
and selections per minute is reported.

III. RESULTS

All methods reduced the number of iterations considerably,
sometimes by as much as one third of the original number of

Fig. 2. Results of the offline cross-validation. Each early stopping method
was tested against the no stopping condition and results are reported as *
(p < .05) and ** (p < .01). Subsequently, all dynamic stopping methods
were tested against the fixed optimal condition. Results are reported as ◦
(p < .05) and ◦◦ (p < .01). Error bars represent the SEM. Note that the
PASS2D has a separate scale on the right side.

iterations (see Figure 1). This reduces the time needed for a
selection, and thus positively influences SPM performance.
The black dotted line represents the minimum number of
three iterations that was enforced. As can be seen, several
methods almost reach this minimum value on average. For
instance, Liu and Lenhardt are close to this minimum number
of trials, even though the most conservative threshold was
selected. On the other hand, due to its conservative nature
the rank diff method stays well above this.

Figure 2 shows the SPM performance for all paradigms
and stopping methods. The white column refers to the no
stopping condition, where a trial always consisted of the
maximum number of iterations (see Table I and Figure 1).
Performances for all five stopping methods were compared
to this using a two-sided, paired t-test (see Figure 2). Consec-
utively, all dynamic stopping methods were compared to the
fixed optimal condition, which represents the method that is
native to all BCI systems. All tests within one paradigm were
corrected for multiple testing using the Bonferroni method.
The result for each method is shortly described below.

On average, fixed optimal was better than no stopping for
all datasets, though significance was found in only one out
of five datasets. Some participants seem to benefit from this
method, whereas others clearly show a drop in performance
(not shown). Possibly, the method could be made more robust
by deliberately adding a certain amount of trials, though
finding this number is again an optimization problem.

Over all datasets, the rank diff method significantly in-
creased the SPM score. In fact, no participant showed a
reduced performance, which possibly owes to the highly
conservative nature of the heuristic. On the relatively difficult
AMUSE dataset, it is the only method that significantly
increases the performance. On the other hand, it was the
only method to perform significantly worse than the fixed
optimal condition the PASS2D dataset.

Lenhardt was on all datasets one of the methods that
required the least iterations, and on two datasets it increased
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the performance significantly. Though a low number of
iterations could increase the SPM, this is not a linear relation.
In fact, for three datasets the performance was inferior to no
stopping, though this was not significant. This is possibly
why the original authors recommended a second constraint
after evaluating their method.

Höhne showed a significant improvement over no stopping
in four out of five datasets, and it reached the highest average
SPM on all those. Furthermore, it was the only method
to perform significantly better than fixed optimal on one
dataset. Though not as conservative as rank diff, it only rarely
decreased an individual performance (not shown).

Possibly the simplest method, Lui, increased performance
significantly on three datasets. However, on the other two
datasets it decreased the performance for a considerable
number of participants (not shown). Possibly, this is due to
the nature of the heuristic which uses absolute distances to
the separating hyperplane. This distance may drift in non-
stationary data such as EEG.

IV. DISCUSSION

Looking at the averages can be misleading when general-
izing to new subjects. For instance, it may be preferable to
use a method that increases the average performance slightly
less, when in return it does not decrease the performance
on individual cases. A general trend for all methods is that
they are good for subjects that show a good performance
already. For the lower performing subjects they did not bring
much benefit, some even decreased their performance. Only
rank diff seems to be well behaving on all datasets in the
sense that it never decreases performance. This comes at the
cost of a lower average performance on some datasets, when
compared to other stopping methods.

All methods tested here have their own ‘trade-off’ param-
eter, to tweak them for accuracy and speed. However, none
of the original publications give a suggestion as to what may
be a good value. Here, the most conservative value was used
that was reported in the original work, which is what would
typically be done in online experiments with new users.
Later, when the characteristics of the user become clear, a
less conservative value can be picked if this is feasible.

Fixed optimal refers to the method of simply setting a
fixed, lower number of iterations. Any BCI to date allows this
to be set by the operator, making it the method with the least
implementation effort. Though it resulted in a slightly higher
average performance on all datasets, this was only significant
in one case. Possibly the fixed number of iterations that is
optimal for the training set is not optimal for the test set.
This may prove even more important for longer recordings.
For this reason, the often reported potential performance of
a BCI, based on offline analyzes, may be biased and not
transfer well to online recordings.

Fortunately, there are good alternatives in literature, that
do significantly increase the user’s performance. As the
rank diff method increased the performance on all datasets
significantly, without decreasing the performance of any
single subject, this seems to be the method of choice when

little is known about the paradigm or subject. Other methods,
such as Höhne, can maximally boost overall performance but
result in slightly decreased performance on individual cases.

It is worth to note here again that none of the methods,
except for fixed optimal is bound to a fixed number of
iterations in online mode. They can vary the number of
iterations during online use. This could prove useful with
fluctuations in users attention, where lapses in attention can
be reacted to by increasing the number of iterations.
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[11] J. Höhne, M. Schreuder, B. Blankertz, and M. Tangermann, “A novel
9-class auditory ERP paradigm driving a predictive text entry system,”
Frontiers in Neuroprosthetics, 2011, submitted.

[12] M. S. Treder, N. M. Schmidt, and B. Blankertz, “Towards
gaze-independent visual brain-computer interfaces,” in Frontiers in
Computational Neuroscience, 2010, conference Abstract: Bernstein
Conference on Computational Neuroscience 2010. [Online]. Available:
http://dx.doi.org/10.3389/conf.fncom.2010.51.00117
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