
 

 

 

 

Abstract— Before 2009, the feasibility of applying brain-

machine interfaces (BMIs) to control prosthetic devices had 

been limited to upper limb prosthetics such as the DARPA 

modular prosthetic limb. Until recently, it was believed that the 

control of bipedal locomotion involved central pattern 

generators with little supraspinal control. Analysis of cortical 

dynamics with electroencephalography (EEG) was also 

prevented by the lack of analysis tools to deal with excessive 

signal artifacts associated with walking. Recently, Nicolelis and 

colleagues paved the way for the decoding of locomotion 

showing that chronic recordings from ensembles of cortical 

neurons in primary motor (M1) and primary somatosensory 

(S1) cortices can be used to decode bipedal kinematics in rhesus 

monkeys. However, neural decoding of bipedal locomotion in 

humans has not yet been demonstrated. This study uses non-

invasive EEG signals to decode human walking in six 

nondisabled adults. Participants were asked to walk on a 

treadmill at their self-selected comfortable speed while 

receiving visual feedback of their lower limbs, to repeatedly 

avoid stepping on a strip drawn on the treadmill belt. Angular 

kinematics of the left and right hip, knee and ankle joints and 

EEG were recorded concurrently. Our results support the 

possibility of decoding human bipedal locomotion with EEG. 

The average of the correlation values (r) between predicted and 

recorded kinematics for the six subjects was 0.7 (±0.12) for the 

right leg and 0.66 (±0.11) for the left leg. The average signal-to-

noise ratio (SNR) values for the predicted parameters were 3.36 

(±1.89) dB for the right leg and 2.79 (±1.33) dB for the left leg. 

These results show the feasibility of developing non-invasive 

neural interfaces for volitional control of devices aimed at 

restoring human gait function.  

I. INTRODUCTION 

n the United States, there are approximately 1.7 million 

people persons living with limb loss (National Limb Loss 

Information Center, 2008). Lower limb amputations 
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accounted for 97% of all dysvascular limb loss discharges 

(133,735) from 1988-1996, and increased at a rate of 27% 

over this period. In addition, spinal cord injury, ALS and 

stroke affect locomotor capabilities and the quality of life of 

about 2 million people in the USA. Moreover, the socio-

economic burden imposed on patients, relatives and 

caregivers is enormous.  Therefore, restoration of gait 

function has been a long-standing focus of rehabilitation 

research worldwide. Recently, Nicolelis and colleagues have 

shown that primary motor cortex carries information about 

bipedal locomotion [1]. They demonstrated for the first time 

that chronic recordings from ensembles of cortical neurons 

in primary motor (M1) and primary somatosensory (S1) 

cortices can be used to predict the kinematics of bipedal 

walking in rhesus macaques. These results support the 

feasibility of BMI systems to restore locomotion. However, 

an important challenge of that study is its invasiveness. 

Electrodes implanted directly in the cortex might pose a 

serious risk for the patient, and may result in complications 

due to loss of signal integrity. Alternatively, it may be 

possible to use noninvasive scalp electroencephalography 

(EEG) to decode gait parameters in humans. Recently, our 

laboratory showed that the critical information needed to 

decode the kinematics of natural multijointed movement is 

available in the EEG signals in the lower frequencies (< 4 

Hz) [2-4]. In light of these promising results and of the 

feasibility of decoding locomotion proven by Nicolelis‘ 

work, we show in this paper that EEG signals recorded from 

healthy subjects can be used to accurately decode kinematics 

extracted from lower limbs using linear neural decoders.        

II. METHODS 

A. Experimental setup and procedure 

Six healthy adults aged 18-45 (3 male, 3 female) with no 

history of neurological disease or lower limb pathology and 

free of injury participated in the study after giving informed 

consent. The study was conducted with approved protocols 

from the Institutional Review Boards at the University of 

Maryland College Park, the University of Maryland 

Baltimore, and the Baltimore VA Research and 

Development Committee. Participants were first asked to 

walk on a treadmill, to establish their comfortable speed 

during a 5-minute familiarization period that preceded the 

beginning of the recordings. Next, resting eyes-open EEG 

was collected during a 2-minute period (baseline) of quiet 

standing on the treadmill. This was followed by 5-minutes of 

precision walking, when subjects were instructed to walk on 

the treadmill at their comfortable speed while receiving real 

time visual feedback (30 frames/sec) of their lower limbs 
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and told to avoid stepping on the white stripe drawn in the 

treadmill‘s belt by using the monitor‘s video to keep track of 

foot placement relative to the white stripe. This increased the 

attentional demands during treadmill walking [5], a 

condition that can be considered to mimic walking in a novel 

environment or under novel conditions (e.g., after brain 

injury).  

B. Limb movement and EEG recordings 

The three-dimensional (3D) joint kinematics of the hip, 

knee and ankle joints were recorded using an infrared optical 

motion capture system (Optotrak, Northern Digital, Ontario, 

Canada @ 100 Hz) with foot switch data (Koningsberg 
Instrumentation, Pasadena, CA, @ 100 Hz). Precision 

manufactured 5 cm diameter disks (Innovative Sports 

Training, Chicago, IL), each embedded with three infrared 

diodes that formed an equilateral triangle (~3 cm sides), 

were affixed with adhesive and secured with foam wrap at 

the second sacral vertebra (S-2) and on the thigh, shank, and 

foot segments of each lower limb. A segmental model of the 

lower limbs was then determined by digitizing joint centers 

for the hip, knee and ankle joints of each limb. Gait 

kinematics were derived from the model using motion 

analysis software (Motion Monitor, Innovative Sports 

Training, Chicago, IL) and exported as ascii files containing 

time histories of the joint angular positions and joint angular 

velocities for the hip, knee and ankle joints of the right and 

left leg. Whole scalp 60-channel EEG (Neuroscan Synamps2 

RT, Compumedics USA, Charlotte, NC, USA) and electro-

ocular activity were recorded (sampling rate of 500 Hz; 

band-pass filtered from 0.1 to 100 Hz; right ear lobe (A2) 

was used as a reference) and time-locked with the movement 

kinematics using the footswitch signals.  

C. Signal preprocessing 

All the data analysis, decoder design and cross-validation 

procedures were performed off-line using custom software 

written in MATLAB (Mathworks Inc., Natick, MA). Twelve 

electrodes covering the most critical brain areas involved 

during locomotion were used for decoding: pre-frontal (F3, 

Fz, F4), motor (C3, Cz, C4), parietal (P3, Pz, P4) and 

occipital (O1, Oz, O2). The choice of 12 out of 60 electrodes 

is also due to the fact that for a real-time analysis (our 

ultimate goal) a small number of sensors is desirable for 

computational reasons. Signals from each EEG electrode 

were decimated by a factor of 5 (to 100 Hz), then filtered 

with a zero-phase, 3rd order, band-pass Butterworth filter 

(0.1 – 2 Hz) and normalized by subtracting their mean and 

dividing by their standard deviation [3]. Kinematic data were 

filtered with a zero-phase, 3rd order, band-pass Butterworth 

filter (0.1 – 3 Hz), as this frequency range accounted for 

90% of the signal power.  

D. Muscle and eye artifacts 

It has been shown that electromyographic (EMG) and 

ocular artifacts do generally occur mainly at frequencies 

higher than 8 Hz, which is 4 times higher than our frequency 

cutoff of 2 Hz used for reconstruction [6]. Moreover, frontal 

and temporal electrodes were removed from the analysis, as 

those electrode sites are prone to facial EMG and eye-

blinking artifacts [6]. Recently [4] showed that eye 

movements don‘t positively affect the decoding accuracy.  

In order to rule out the presence of mechanical artifacts 

introduced by motion of the EEG cables or walking itself, 

we computed the phase-locking value (PLV) among sensors. 

The rationale was that potential motion artifacts due to EEG 

wires or the subject‘s motion would affect all sensors 

equally. To assess the phase-locking value using wavelet 

analysis, the significance threshold value was set based on 

the values calculated by [7]. We applied such analysis to 

both the baseline EEG and the walking EEG conditions. Our 

results suggest that mechanical artifacts did not play a role in 

decoding  

E. Decoding method 

A time-embedded (10 lags, corresponding to 100 ms in the 

past) linear Wiener filter [1,3,8] was independently 

designed, optimized, and cross-validated for each extracted 

gait parameter. The linear model was given by: 

 

 

 

where )(ty
 

is the gait parameter measured time series 

representing the angular kinematics )/,( dtd , for the 

hip, knee and ankle joints; L and N are the number of lags 

and the number of electrodes, respectively; )( ktSn   is the 

standardized voltage measured at EEG electrode n  at lag 

time k , a  and b  are weights obtained through multiple 

linear regression and )(t  is the residual error. The 

parameters of the model were calculated using the standard 

GLM functions in MATLAB under the Gaussian distribution 

using the Matlab‘s linear link function. 

F. Model performance metrics 

In order to assess and compare the predictive power of 

each decoder, a 5-fold cross validation procedure (80% 

training, 20% testing) was employed. The Pearson 

correlation coefficient ( r ) was calculated between the 

known measured signal and the predicted decoder‘s output 

as follows: 

 

 

where x  is the actual measured parameter, x̂  is the 

prediction of that parameter and x  and x̂ are the standard 

deviations of x and x̂  respectively. 

The SNR  (signal-to-noise ratio of the decoder‘s output) 

was calculated according to [1]. 

     

 

 

where the variance )(Var of the actual measured parameter 

(signal x ) was calculated by subtracting out the mean of the 

signal, then squaring and averaging the amplitude. The noise 

or error ( x̂ ) was the difference between the predicted and 
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actual measured signal. The mean squared error (MSE) was 

calculated by squaring the difference, then averaging to get 

the MSE , or the power of the noise. The ratio between 

)(xVar and )ˆ(xMSE was converted into a decibel (dB) 

scale. A SNR with a value of ―0‖ means that the signal and 

the noise are equally present in the reconstructed kinematic 

parameter. A SNR < 0 (poor prediction) indicates a noisy 

reconstruction, while a SNR > 0 (good prediction) indicates 

a high-quality reconstruction of the signal. 

G. Sensor dropping analysis 

A sensor dropping analysis (SDA) was used to evaluate the 

importance of groups of sensors of different sizes to 

decoding accuracy (e.g., [1,8]). First, decoder models were 

trained by using each lag of each sensor (one lag at a time) 

with the above mentioned 5-fold cross validation procedure. 

Sensors were ranked based on the maximum value of the 

correlations calculated at each lag. 

III. RESULTS 

Our EEG decoding method was able to reconstruct 3D 

angular kinematics of the ankle, knee and hip joints with 

high accuracy. In order to quantify the level of accuracy, we 

computed the Pearson‘s r and the SNR between measured 

and predicted joint angles and angular velocities across     

Fig. 1.  Reconstructed left and right leg kinematics from EEG for the ‗best‘ 
(S4) decoded subject. Rows represent ankle, knee and hip joints. Each 

column represents comparison of reconstructed (gray) and actual (black) 

measured kinematic trajectories for joint angle and angular velocity time 
series. R values are reported between square brackets. 
 

cross-validation folds. SNR proved to be a more sensitive 

measure compared to r, which describes the correspondence  

of signal waveforms, but is insensitive to amplitude scaling 

and offsets. The averages of the correlation values (r) and 

signal-to-noise ratio (SNR) of the right and left legs for each 

subject were: S1 (rright = 0.6 ± 0.11, SNRright = 2.21 ± 1.02; 

rleft = 0.55 ± 0.12, SNRleft = 1.73 ± 0.9), S2 (rright = 0.75 ± 

0.1, SNRright = 4.1 ± 1.82; rleft = 0.69 ± 0.06, SNRleft = 3 ± 

0.77), S3 (rright = 0.61 ± 0.05, SNRright = 2.08 ± 0.47; rleft = 

0.59 ± 0.04, SNRleft = 1.86 ± 0.43), S4 (rright = 0.83 ± 0.03, 

SNRright = 5.18 ± 0.68; rleft = 0.75 ± 0.08, SNRleft = 3.95 ± 

1.27), S5 (rright = 0.62 ± 0.06, SNRright = 1.8 ± 0.89; rleft = 

0.67 ± 0.07, SNRleft = 2.38 ± 1.05), S6 (rright = 0.77 ± 0.14, 

SNRright = 4.81 ± 2.38; rleft = 0.73 ± 0.12, SNRleft = 3.82 ± 

1.61). The average of the r values between predicted and 

recorded kinematics across the six subjects was 0.7 (±0.12) 

for the right leg and 0.66 (±0.11) for the left leg. The 

average of the SNR values for the right leg was 3.36 (±1.89) 

and 2.79 (±1.33) for the left leg. Figure 1 shows examples of 

the measured (black) and the reconstructed (gray) kinematics 

for the best (S4) subject in terms of decoding accuracy.  
 
 

 

 

 

 

 
 

 
 

 

 
 

 

 
 

 

 
Fig. 2.  Standardized predicted (gray) and actual (black) trajectories of the 

knee joint angle for the best subject (S4). X and Y axes represent 

respectively the standardized joint angle of the left and right knee. The 
black circles represent the starting points. The predicted trajectory has been 

filtered with a zero-phase, 3rd order, band-pass Butterworth filter (0.1 – 3 

Hz) before being plotted for comparison to the 3Hz filtered measured data. 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

Fig. 3.  Spatial distribution of r2decoding accuracies across sensors for the 

best (S4) subject. Scalp maps represent the mean spatial distribution of r2 
across electrodes across all lags for each parameter resulting from the 

training of the linear model. The larger the circumference of each electrode, 

the higher its r2value. 
 

The quality of the reconstructions of the gait trajectories is 

shown in Figure 2, where an example of standardized actual 

and predicted angular angles, and their relative phasing, for 
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the right and left knee for subject S4 are depicted in 2D. 

Figure 3 shows the spatial distribution of r
2 

for the best 

subject. 

IV. DISCUSSION  

The main result of this work is the first demonstration of 

the feasibility of decoding human bipedal locomotion from 

scalp EEG using linear decoders. Many studies using 

invasive and non-invasive recordings have already 

demonstrated the feasibility of decoding kinematic 

parameters such as angular velocity, joint angles from 

monkeys and humans [2,3,8,9,10,11,12,13] However, these 

techniques have been largely studied in, and applied to, 

upper limb function, perhaps due to the expected 

physiological and non-physiological artifacts during lower 

limb functional activities such as walking. As a consequence 

of this, little is known about the organization of cortical 

motor circuits for walking in humans [14]. Interestingly, 

neuroimaging studies show that rhythmic foot or leg 

movements recruit primary motor cortex [15], whereas 

electrophysiological investigations have shown 

electrocortical potentials related to lower limb movements 

[16], and greater involvement of human cortex during 

steady-speed normal locomotion than previously thought 

[17,18]. Moreover, studies using functional near-infrared 

spectroscopy (fNIRS) have shown involvement of frontal, 

premotor and supplementary motor areas during walking 

[19]. Recently, [17] have shown that meaningful changes 

during walking or running occur at low frequencies (< 10 

Hz) in EEG. Encouraged by these findings, we decoded 3D 

joint kinematics using frequencies in the delta band (≤ 2 Hz). 

Our choice of input space is consistent with recent EEG, 

electrocorticographic (ECoG), and local field potential 

(LFP) upper limb movement decoding studies that use the 

fluctuations in the amplitude of highly smoothed signals for 

decoding [12,20,21]. In summary, this study demonstrates 

that non-invasive scalp electroencephalographic (EEG) 

signals can be used to decode kinematic parameters 

extracted during walking with high accuracy. Encouraged by 

promising decoding results obtained in our laboratory [2-4], 

we designed neural decoders by using time-domain EEG 

features extracted from the low-frequency delta band (0.1 – 

2 Hz), the so-called slow cortical potentials. Remarkably, 

SNR and r values were comparable to the ones reported by 

[1], a result that, combined with observations drawn from 

the scalp map distribution, supports the hypothesis that the 

EEG signals in the low delta frequency band over a large but 

sparse cortical network contain decodable information that 

could be used to design EEG-based brain-machine interface 
systems for restoration of lower limb movement.   
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