
 

 

 

  

Abstract—Brain-Machine Interfaces (BMIs) are systems which 

mediate communication between brains and artificial devices. 

Their long term goal is to restore motor functions, and this 

ultimately demands the development of a new generation of 

bidirectional brain-machine interfaces establishing a two-way 

brain-world communication channel, by both decoding motor 

commands from neural activity and providing feedback to the 

brain by electrical stimulation. Taking inspiration from how 

the spinal cord of vertebrates mediates communication between 

the brain and the limbs, here we present a model of a 

bidirectional brain-machine interface that interacts with a 

dynamical system by generating a control policy in the form of 

a force field. In our model, bidirectional communication takes 

place via two elements: (a) a motor interface decoding activities 

recorded from a motor cortical area, and (b) a sensory 

interface encoding the state of the controlled device into 

electrical stimuli delivered to a somatosensory area. We 

propose a specific mathematical model of the sensory and 

motor interfaces guiding a point mass moving in a viscous 

medium, and we demonstrate its performance by testing it on 

realistically simulated neural responses. 

I. INTRODUCTION 

NE of the most challenging goals of neural 

engineering is the development of Brain-Machine 

Interfaces (BMIs) which aim to restore motor functions to 

paralyzed people by providing these patients with new 

communication channels with the external world [1, 2]. In 

the last decade most research on BMIs has focused on 

decoding the motor intent from neural activity and 

translating it into commands for an external device. 

However, a disadvantage of BMIs based purely on decoding 

is that they lack feedback information, such as the one given 

by proprioception or touch. This feedback is fundamental for 

planning and executing many real-life tasks. The drawbacks 

of BMIs based purely on decoding have led researchers to 

begin developing bidirectional BMIs [3, 4] which, in 
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addition to decoding the commands expressed by neural 

activity, also provide the brain with feedback information 

about the interaction with the external world. Our own 

research has proposed a model for these bidirectional BMIs  

based on the emulation of the spinal cord [5]. Spinal 

interneurons organize muscles in synergy groups whose 

mechanical outputs are force fields (FFs) acting upon the 

limbs [6-8]. Taking inspiration from this evidence, we 

propose a BMI that can interact with an external device, 

such as a point mass or a multi articulated arm, by 

generating control policies in the form of FFs. We propose 

to implement this behavior through a motor interface which 

translates the recorded neural activity into a force vector, 

and a sensory interface which maps the state of the device 

into a pattern of electrical stimuli to be delivered directly to 

the brain.  

However, the above conceptual setup leaves open many 

questions regarding the practical implementation of these 

concepts. First, we need to understand which algorithms 

should be used to set the sensory maps and the motor 

decoding interface. Second, we need to test if the interface 

can work effectively with the amount of information that can 

be extracted from neural recordings, and if so what is the 

parameter range of the FF by which the interface works. In 

the following, we begin addressing these issues by proposing 

a specific mathematical model for sensory and motor maps 

(which we term dynamic brain-machine interface, dBMI) 

and by testing its effectiveness on realistically simulated 

neural responses.  

II. METHODS 

A. General scheme 

The general scheme is as follows (Fig. 1). The brain 

interacts with the dynamics of an object, which in this paper 

we choose to be a point mass moving within a planar spatial 

domain. The interface controls the dynamics of the point 

mass by generating a FF which establishes a correspondence 

between the position of the controlled object and a resulting 

force. 

The procedure begins by specifying a particular desired 

FF (in this paper chosen to be a radial field converging to the 

origin of the plane) corresponding to the control policy of 

the dynamical system that we wish to implement. Then, 

during a calibration phase run on a “calibration set” of 

neural responses, the dBMI creates an approximation to the 

desired FF in two steps. A motor interface transforms 
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recorded neural activities into forces on the plane over which 

the point mass moves. A sensory interface identifies an 

electrical stimulus that encodes the current position of the 

controlled object. The calibration procedure is designed to 

enforce that the sensory mapping is consistent with both the 

desired FF and with the force vectors produced by the motor 

interface.  

 

It is important to note that, because of the variability of 

neural responses (see below) each time a stimulus is applied 

a different force may be produced. Therefore, the actual field 

generated by the interface is the superposition of a noiseless 

component (corresponding to the desired field) and of a 

variable component induced by neural response variability. 

For this reason, we also refer to the FF generated by the 

interface as “neural force field”.   

B. Simulated data set 

To test the dBMI, we constructed a simulated neural 

response dataset. Its first order statistics matched those 

observed from real motor neural responses recorded in 

conditions mimicking artificial injection of information into 

a sensory area. In brief, we obtained these data by first 

implanting an array of 16 micro-electrodes (50 µm wire 

diameter, Tucker-Davis Technologies) in the vibrissal 

representation of primary somatosensory cortex (S1) and a 

similar array of recording electrodes in vibrissal motor 

cortex (M1) of a rat anaesthetized with Zoletil using 

procedures compliant with NIH and EU guidelines about 

animal experiments, and fully approved by the local 

Government and the IIT ethical committee. We then selected 

a set of electrical stimulation patterns delivered on S1 which 

were empirically found to reliably modulate responses in M1 

[9].  

 In this particular study we used R=200-250 repetitions of 

each of the S=4 electrical stimulation patterns. For each 

stimulation we simultaneously recorded the evoked spiking 

responses of n=13 single neurons. From these data we 

computed the time dependent firing rate of each unit (rs(t), 

s=1,...,S) to each stimulus, binned in the 0-600 ms post-

stimulus window with a 10 ms temporal resolution. We then 

generated simulated responses of the M1 neurons to the 

electrical stimulation patterns by using a time dependent 

Poisson process with a time dependent firing rate equal to 

that measured experimentally. The time dependent Poisson 

process is a simple model, widely used to generate neural 

responses with a variability close to that observed from real 

cortical responses [10]. The simulated neural responses take 

the form of the list of spikes numbers emitted by each 

neuron in each 10 ms time bin. 

To evaluate how robust is the dBMI to degradation of the 

quality of responses of the motor neurons, we also generated 

neural responses with progressively reduced amounts of 

information about the electrical stimuli. This was done by 

“blurring” the firing rate in response to each stimulus rs(t) 

with the average firing rate in response to all stimuli r(t) as 

follows:  

, ( ) ( ) ( ( ) ( ))
s s s

r t r t r t r t
γ

γ= + ⋅ −     (1) 

This parametric modification increases the stimulus 

specific firing rates which are below average, and decreases 

rates above average. The parameter γ regulates the amount 

of information and was varied from 0 to 1. For γ=0 the firing 

rates equal the original ones and all original stimulus 

information is available, while for γ=1, each stimulus 

triggers the same firing rate and information is zero. 

The same simulated process generated both the 

“calibration” neuronal responses (50 per stimulus) used to 

set up the motor and sensory interface, and the “test” trials 

(again 50 per stimulus) used to evaluate the dBMI 

performance.   

C. Motor interface  

The motor interface is the algorithm translating neural 

activity into force vectors applied to the dynamical system 

and was set up on calibration responses as follows. First the 

neural population response was rewritten as a weighted sum 

of the average response to each stimulus. The resulting S-

dimensional vectors were then subjected to PCA and 

projected on the first two principal components (PCs) which 

explained 69% of the variance on average. The projection 

matrix and the mean calibration responses to stimuli 

generated a map from the responses to two-dimensional 

force vectors. The motor interface calibration was finalized 

by rescaling the PCs to match the range of variation of the x-

y components of the desired FF vectors (specified below) 

over the field’s spatial domain. 

D. Sensory Interface  

The sensory interface maps the instantaneous position of 

the controlled object onto one of the electrical stimulation 

patterns. The first step in setting up the sensory interface 

consisted of computing the average force vector triggered by 

each stimulus across the calibration trials (represented by the 

colored vectors in Fig. 2.B). We then associated the 

corresponding stimulus with the position at which each 

average force can be found in the desired FF (white dots in 

Fig. 2.A). Any given point in the sensory space is 

subsequently encoded by the stimulus associated with the 

closest of these points, thereby defining a look up table 

between 4 regions in the field domain and the electrical 

stimuli (colored areas in Fig. 2.A). The sensory map 

established in this way is well defined under the assumption 

Fig. 1. Schematic of the dynamic BMI system. The interface between 

the brain and a dynamical system is established by a motor interface 

that converts neural responses into a force and a sensory interface that 

maps the instantaneous position of the controlled object onto one of the 

stimulation patterns in the calibration vocabulary. 
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that the desired FF is invertible (i.e. there is a one-to-one 

mapping between force vectors and positions). 

E. Simulations of the dynamical system interacting with 

neural activity  

To test the above concepts, we made neural activity interact 

with a simulated point mass in a viscous medium which 

moves on a plane. Our desired FF was a linear FF defined by 

the equation F K x= ⋅  , whose magnitude depends only on 

the radial distance x from the origin of the plane. This 

resulted in the following linear differential equation:  

0M x B x K x⋅ + ⋅ + ⋅ =ɺɺ ɺ       (2) 

The critical parameter determining the dynamics of this 

system is the damping ratio, defined as follows:  

/ (2 )ζ = B K M⋅ ⋅
      (3)

 

 

We explored different behaviors: we varied the damping 

ratio from 1.03 (system almost critically damped) to 2.93 

(system overdamped). This was achieved by fixing the 

stiffness K and the mass M to 4 N/m and 10 kg, respectively 

while varying the viscosity B from 13 to 37 N·s·m
-1

. 

The force decoded by the motor interface from the 

simulated neural activity was supplied as an input to the 

dynamical simulation which was integrated for 1 s. The 

position of the simulated point mass was then retrieved and 

fed to the sensory interface to determine the next stimulus to 

be applied.  

III. RESULTS  

A. Procedure for testing the operation of the dBMI 

After setting the sensory and motor interfaces during 

calibration, the operation of the dBMI was tested as follows: 

 1) The point mass was placed at a randomly selected 

starting position inside the FF spatial domain. 

2) The sensory interface determined the stimulus to be 

delivered at that position, based on the nearest calibration 

site. The algorithm selected at random a simulated neural 

response from the pool of responses that were obtained from 

repeated application of that stimulus.  

3) The motor interface decoded the simulated neural 

signal and derived the force vector to be applied to the point 

mass. An example of 100 forces derived from 100 random 

realizations of the simulated neural responses to each 

electrical stimulus is shown in Fig. 2.B.  

4) The next position was computed by integrating the 

equation of the dynamical system for 1 s. 

5) The process was repeated from step 2 until the mass 

reached an end zone surrounding the equilibrium point. If 

convergence to the equilibrium point was not achieved 

within 200 steps, we classified it as a converge failure. 

B. Performance of the dBMI for different values of neural 

information and field viscosity 

We first investigated the performance of the system as we 

varied the amount of neural information from the one 

matching that available in real neural firing rates (γ=0) down 

to smaller and smaller information values (obtained by 

increasing γ up to 1). The forces derived from these 

responses are represented by the black arrows in Fig. 2.B for 

γ=0. Note that these forces reliably point in the same 

direction as the average force obtained during calibration 

(i.e. colored arrows), indicating that calibrating and running 

the interfaces with realistic neural information values yields 

well behaved neural fields.  

The reliability of the neural field  as a function of the 

information in neural responses can be quantified by the 

Circular Variance defined as 1 - | <exp(iθ)> |, with θ being 

the angle of a force vector [11]. We observed a raise in the 

Circular Variance when we deteriorated the neural 

information by increasing γ (Fig. 2.C). Thus, as γ increases, 

the distribution of forces spreads more and more until there 

is no more neural information (γ=1) and they spread in all 

possible directions.  

We then further evaluated the behavior of the dBMI by 

computing both the fraction of simulations in which the 

system successfully converged and the average number of 

steps needed to reach convergence. Figure 3.A shows that 

with the most stimulus informative data sets (γ≤0.5) the 

 

 Fig. 2.  Operation of the dBMI. (A) A graphical representation of four sensory regions generated by the sensory interface mapping each position of the 

point mass to a stimulation pattern. The regions are defined with a nearest neighbor criterion relative to the position associated with the mean force 

produced by each stimulus (white dots). (B) The motor interface output represented by one hundred test force vectors (black arrows) collected during 

the testing phase grouped for each stimulus. Colored arrows represent the mean calibration force produced by each stimulus. (C) Circular Variance of 

test forces averaged across stimuli as a function of γ. The spread of test force vectors increases with less stimulus-informative datasets. 
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point mass converged 100% of the time and on average in 

less than 25 steps. The performance was still high (90% of 

convergences) even with the least informative data set that 

still contained information (γ=0.75), although the point mass 

would take longer to converge. Only when neural 

information was totally erased (γ=1), did the point mass 

generally fail to reach the center (it did so by chance 5% of 

the time). 

We finally studied how the dBMI performed when 

varying the viscosity (and thus the damping ratio) of the 

dynamical system. We found (Fig. 3) that increasing 

viscosity increased the average number of steps needed to 

converge, consistent with the intuition that high viscosity 

slows down the dynamics. The dependence of convergence 

speed upon viscosity was much more pronounced at low 

neural information values (γ>=0.5) than for high neural 

information values (γ<0.5). This suggests that at low neural 

information values the effect of the mechanics of the 

dynamical system on the point mass become relatively more 

important than the neural component, as the brain exerts a 

less tight control on the mass in such conditions.  

IV. CONCLUSION 

Here we proposed and implemented an explicit 

mathematical model for a bidirectional BMI which can 

communicate bidirectionally with the brain and control 

movement of objects by generating FFs, of the type 

proposed as a concept in [5]. 

Using simulated neural responses and a simple dynamical 

system, we explored the efficiency of our proposed dBMI 

after it had been calibrated to implement an elastic 

convergent radial FF. We found that the system was robust 

and convergent even when run with neural information 

values much lower than the ones obtained experimentally by 

implanting microelectrodes arrays into cortical areas. The 

system produced a convergent behavior of the point mass for 

a wide range of damping ratios, showing robustness to 

parameter changes. The algorithm proposed and its 

validation provide a proof of concept of the feasibility of the 

dBMI design and lay down the algorithmic bases for 

implementing the dBMI in real-time in vivo experiments.  

An important algorithmic challenge for our future research is 

how to modulate in awake animals the automatic behavior 

implemented by the current system according to a volitional 

command expressed for instance by another neural 

population. The research presented here, together with these 

successive developments, lays down solid mathematical 

foundations for a new family of BMIs with the potential to 

provide patients suffering from a wide range of sensory or 

motor disabilities with the capability to perform goal-related 

actions requiring accurate non-visual feedback. 
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Fig.3. Performance of the dBMI averaged over 100 simulations. (A) 

Rate of convergence of the point mass as a function of γ and of 

viscosity. (B) Number of steps it takes the point mass to reach the 

center of the sensory area as a function of γ and viscosity.  
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