
  

  

Abstract—Many brain machine interfaces (BMI) seek to use 

the activity from hundreds of simultaneously recorded neurons 

to reconstruct an individual’s kinematics.  However, many of 

these neurons are not task related since there is no way to 

surgically target those neurons.  This causes model based 

decoding to suffer easily from over-fitting on noisy unrelated 

neurons.  Previous methods, such as correlation analysis and 

sensitivity analysis, seek to select neurons based on which 

reduced order model best matches the ensemble model and 

thus does not worry about over fitting.  To address this issue, 

this paper presents a new method, cross model validation, that 

ranks neuron importance on the neuron model’s ability to 

generalize well to data from correct movements and poorly to 

data from incorrect movements.  This method attempts to 

highlight the neurons that are able to distinguish between 

movements the best and decode accurately.  Selecting neurons 

using cross model validation scores as opposed to randomly 

selecting them can increase decoding accuracy up to 2.5 times  

or by 44%.  These results showcase the importance of neuron 

selection in decoding and the ability of cross model validation 

in discerning each neuron’s utility in decoding. 

I. INTRODUCTION 

HE goal of brain machine interfaces (BMI) is to 

translate neural signals into commands for a prosthetic.  

It is well known that single unit recordings and local field 

potentials from primary motor cortex encode information 

such as limb position, limb velocity, and muscle activity [1-

7]. It is also the final cortical output available before 

commands are sent to the spinal cord.  It therefore makes 

sense to base decoded motor commands from moor cortex.   

The field has recently moved towards decoding with 

single unit and population recordings of cortical neurons 

from implanted microelectrode arrays [8]. These electrode 

arrays are surgically placed over a large population of motor 

related cortical regions to guarantee inclusion of task related 

neurons, however many neurons that are not significantly 

modulated during movement are also included. These 

unrelated neurons make it difficult to get a generalized 

model of how neurons encode movement due to fitting on 

unrelated parameters.  Therefore, it is important to be able to 

specifically select task related neurons for both decoding 

accuracy as well as computational efficiency. 

 Traditionally, neurons were selected purely based on 

changes in firing rate during related tasks [9].  However, this 
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assumes that the speed at which a neuron fires conveys most 

of the information a neuron has to encode.  More advanced 

techniques such as correlation analysis and sensitivity 

analysis have been developed.  The former uses variance in 

the model’s output [10] while the latter looks at the Jacobian 

of input-output mappings [11].  Both of these methods will 

have problems with generalization as they depend on the 

training data for neuron selection. 

 We developed a new method using cross model validation 

to account for this problem.  We select neurons based on 

both how well they generalize to new data and on their 

ability to discriminate between different movements to be 

decoded.  Selection is accomplished by comparing a neuron 

model’s ability to distinguish movements using novel data. 

We evaluate this method by decoding monkey finger and 

wrist movements using single unit spikes and kinematic data 

provided by Dr. Marc Schieber from University of 

Rochester.  One successful model for neuron spiking is the 

point process model (PPM) using a generalized linear model 

(GLM) class. It easily includes covariates such as kinematics 

[12].  PPMs have been applied to neuronal spike data 

obtained from a variety of brain regions [12-15] and capture 

intrinsic and extrinsic effects on spiking activity. The GLM 

provides an efficient computational scheme for model 

parameter estimation and a likelihood framework for 

conducting statistical inferences [16].  This cross model 

validation is thus simple to implement with this framework. 

II. METHODS 

A. Experimental Task and Recordings 

The monkey data was collected by Dr. Marc Schieber at 

University of Rochester Medical Center.  A male rhesus 

monkey (Macaca mulatta) was trained to perform visually-

cued hand movement tasks. 115 well-isolated single units 

with task-related activity were recorded sequentially in the 

M1 hand area contralateral to the trained hand.  Kinematics 

were recorded through finger position measured by strain 

gauges on both sides of the wrist and digits on the 

manipulandum.  Simultaneously recorded data was 

simulated by aligning the activity of each unit with its time 

at switch closure. More details of the experiment can be 

found in [17].  The trials were split into 3 mutually exclusive 

and completely exhaustive sets: one each for model fitting, 

cross model evaluation (neuron selection), and decoding. 

 

B. Computational Model 

The spiking of each neuron over time is modeled as a point 

process, a series of 0s and 1s generated by random events 

that occur over time.  To help define a point process of 

neural spiking, we consider an observation interval �0, �� 
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and let ���� be the number of spikes counted in the interval ��∆, �� 
 1�∆� for � � 0, �
∆� where ∆ indicates bin size.  

Within each of these bins, we assume that a spike is 

determined by a Poisson process.  Given a small enough bin 

size, it is safe to assume at most one spike per bin.  A point 

process model can then be completely characterized by its 

conditional intensity function (CIF), defined as 

���|�� , ��� � ���������|��,���
� , where �� and �� denote 

spiking history and history of digit/wrist velocity 

respectively up until time �∆.  The CIF thus generalizes the 
rate function for the Poisson process as temporally varying 

based on spike history and kinematics.   

For our analyses, we use the GLM framework to estimate 

the CIF.  Since log ��� is the link function to the Poisson 
distribution under which the GLM is defined, we estimate 

the log of the CIF for every neuron/movement pair as a 

linear combination of the covariates as $%&����|�� , ���� �' 
 ∑ )*���+� 
  ∑ ,*���-, +./*��.0*�� � [16].   
The indices for the history and kinematic covariates relate 

to the i
th
 window and the d

th
 digit (d=6 for the wrist) from 

which either the number of spikes or average digit velocity 

is pulled from.  The windows cover information from 1ms in 

the past to either 20ms, 40ms, or 60ms in the past.  For the 

spiking history, a smaller window size is used for short term 

history to better resolve the refractory period. 

 

C. Model Evaluation 

 Once the models were computed, we use the 

Kolmogorov-Smirnov (KS) plots to evaluate model 

performance [16].  Specifically, we use the time rescaling 

theorem [18] on the CIF generated by a test data for KS 

plots.  This transforms the spike times using the CIF into a 

unit rate Poisson process by Λ��*� � ∑ ���|�� , ����2���234 Δ.  
The unit rate Poisson random variables can then be 

transformed into a uniform distribution between 0 and 1 by 6* � 1 7 89:;Λ��*�< [18]. 
 The KS plot is then created by plotting the empirical 

cumulative distribution function (cdf) of 6*’s against the cdf 
of a uniform distribution.  An ideal model will give a KS 

plot of = � 9.  The performance (>) of the model for neuron 

n on movement j on encoding data from movement k is thus 

quantified by the KS plot’s average deviation from = � 9: 
>.�?, �� � ∑ @6*A 7 + 7 0.5D @E*�� D                       �1� 

where 6*A is the ith element of the 6*’s sorted and m represents 
the number of spikes (and thus elements in z).  Traditionally, 

the movement for the model and the data are the same.  

Thus, >.�?, ?� is the encoding performance of the model for 

movement j. 

D. Neuron Selection for Decoding 

As stated before, neurons are selected based on their 

ability to encode matching/unmatching movements.  For 

each neuron/movement pair, the associated model uses data 

from all 12 movements to create 12 KS plots.  The data from 

cross validation trials is used here.  Ideally, neurons would 

perform well for the movement it was fit for and poorly for 

the others.   

For every neuron, a 12x12 matrix, A, of model 

performances is created where each row represents model fit 

scores of a single model created for a specific movement on 

the cross validation trials from each of the 12 movements 

(each movement corresponds to a column).  Next, each row 

was normalized based on the score of the model on the 

matching data.  Specifically, 

F.�?, �� � >.�?, ��>.�?, ��.                           �2� 
Thus, a normalized score F.�?, �� H 1 implies that the 

model trained on data for movement j does not predict 

spikes from movement k as well as it does for the movement 

it is intended to encode. Therefore, a high score is desirable 

for neuron selection. The overall score for each neuron I is 
J. � K F.�?, ��.                              �3�

�M

NO�
 

Neurons are then ranked from best to worst according to this 

score. 

 

E. Movement Decoding 

A group of neurons of size N is selected for decoding 

using the previously stated method. In particular, the first N 

ranked neurons are used.  Data from one movement type is 

chosen among the decoding trials.  The likelihood for each 

neuron/model pair is calculated as: 

P � 89:
Q
R7 K ���|�� , ���∆

�∆

��S T
U V �W�*|��2 , ��2X

.

*��
.   �4� 

The log likelihood for each movement type is then 

calculated by summing log �P�’s for each neuron. 
 Four “candidate” movements are chosen from these log 

likelihoods purely by maximum likelihood.  We allow each 

neuron to then have one vote for each of these four 

candidates and the movement with the most votes was the 

decoded movement.  We use this two-step voting process in 

order to reduce the effect of single neurons with relatively 

small likelihoods (i.e. very largely negative log likelihoods) 

drastically impacting maximum likelihood estimates.  Table 

I shows a truncated example of this two-step decoding 

process where the original movement is e2.  N16 skews total 

log likelihood heavily away from e2 despite all other 

neurons having a very high likelihood. 

 We perform this decoding for each movement using 10 

different sets of randomly selected test trials.  Thus, we 

attempt to decode 120 times in total, 10 for each individual 

movement.  Decoding accuracy is judged based on 

percentage of times that the movement was correctly 

classified.  This is then repeated over a range of neuron 

group sizes (n) and different lengths of history to ascertain 

its effects on decoding. 
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TABLE I 

DECODING EXAMPLE: LOG LIKELIHOODS OF NEURON

 e1 e2 e3 e4 

N12 -29.8 -7.4 -4.1 -1.8

N16 -169.7 -345.7 -155.0 -531.6

N33 -51.3 -10.6 -51.7 -4.4

N48 -64.6 -50.9 -84.0 -6.7

N66 -3.4 -1.2 -15.2 -17.0

Total -318.8 -415.8 -310.0 -561.5
Table I.  Truncated example of two-step decoding procedure.  Top three 

movement candidates (italicized) selected from the five based on total log 

likelihood.  Each neuron is forced to vote (bold) amongst those three and 

the winner is selected based on most votes.  Ties broken

likelihood. 

III. RESULTS 

A. Point Process Model Evaluation 

We first examined the feasibility of using this modeling 

technique of point processes with the GLM framework.  

Specifically, we constructed models of the form (2) and then 

95% confidence bounds for KS plots were generated for 

each neuron/model pair for varying history lengths.  

half of the models created stayed within these bounds (20ms 

history: 47.7%, 40ms history: 46.0%, 60ms history: 43.8%).  

Some models strayed for a couple points 

strayed for most of the plot.  Thus, this method for modeling 

neuronal spikes works well on roughly half of the 

neuron/movement pairs given.  

In addition, we looked at the parameters estimated to 

verify modulation of a single neuron’s 

between different movements.  Figure 1 shows an example 

of this for the same neuron between two different 

movements.  Movements e3 and e4 have roughly the same 

average firing rate as shown by .  However, this neuron is 

more dependent on shorter term history (10

movement e3 and longer term history during movement 

(20-35ms).  
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Fig. 1.  Modulation of model parameters for average spike rate (
correspond to an increased chance of firing.  Shaded regions show confidence intevals.  A.  Parameters for movement e3 show a

increased chance of firing given neural activity between 10 and 20 ms in the past.  B.  Paramete

increased chance of firing given neural activity between 20 and 35 ms in the past.
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Though average firing rate is important, this modulation in 

history dependency shows that there are other possible 

distinguishing factors that can be gleaned through this model 

type.  For example, despite the average firing rate during 

both movements being the same, oscillations in the upper 

half of the gamma band are more likely during movement 

while oscillations in the lower half are more likely during 

Given these sanity checks that the modeling works well 

and captures movement to movement changes, we continue 

on with decoding. 

 

B. Decoding Evaluation 

As a control for comparison, decoding was first performed 

on a random selection of neurons.  Decoding accuracies with 

both random and optimally selected neurons are shown in 

Figure 2 for 3 different model structures. In particular, the 

history lengths in the models ranged from 20, 40 and 60 

msec. 

With random selection, decoding performs quite poorly.  

It rises slowly with neuron pool size and caps out at about 

60% accuracy regardless of history length.  It is also 

interesting to note, that if anything, the

history lengths perform worse than those mode

shorter history lengths since all the covariates for the 

are included in those for the former

required to know if this is statistically significant since the 

traces are quite noisy.  Once optimal selection from cross 

model validation is introduced, the decoding performance 

improves across the board for all history and neuron pool 

sizes (with a neuron pool of at least five)

most notable with a small neuron pool of at least five

largest absolute increase in decoding performance 

range is 44% (8 neurons, 40 ms history) and the largest 

relative increase is about 1.5 times (5/8 neurons, 40/60 ms 

history).  Accuracy in general improves with neuron pool 

size much faster but then declines as more n

included for decoding. 

B. 

 

 

 

 

Fig. 1.  Modulation of model parameters for average spike rate ( ) and spiking history ( ) between two different movements.  Values 
correspond to an increased chance of firing.  Shaded regions show confidence intevals.  A.  Parameters for movement e3 show a

increased chance of firing given neural activity between 10 and 20 ms in the past.  B.  Parameters for movement e4 show a statistically significant 

increased chance of firing given neural activity between 20 and 35 ms in the past. 
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Fig.  2.  Movement decoding accuracy with varying history lengths and 

neuron pool sizes with or without optimal neuron selection from cross 
model validation using KS plots. 

IV. DISCUSSION 

The motivation of this study was to examine optimal 

neuron selection in decoding based off of performance in 

cross model validation on novel data.  In all cases, neuron 

selection succeeded in terms of marked increases in 

decoding performance.  Our method was able to highlight 

those neurons well tuned to the model type.   

It is important to note that since this is a model based 

approach, that scoring poorly with this method does not 

necessarily mean a neuron is not task-relevant.  It merely 

means that any relevancy cannot be resolved by the model 

being used.  Expanding from this, we see that decoding 

accuracy plateaus and drops as too many neurons are added 

because neurons not well tuned to the model start being used 

for decoding.  It is interesting to note that this drop happens 

at about 15-20 neurons or about 15% of the neurons 

available despite almost 50% of the neuron/movement 

model pairs encoding well.  This disparity highlights the 

main motivation for the cross model validation.  It is 

possible for a model to encode well while at the same time 

decode poorly since it does not discriminate well between 

movements. 

Though we use this method specifically with KS plots and 

PPMs, there is no barrier in its use for other models and 

modes of evaluation.  As long as there is a method to 

ascertain encoding success and the model based decoding 

occurs between discrete states, then this idea of cross model 

validation should still work.  In the case of continuous state 

decoding, it is even possible to discretize the continuous 

states into bins and proceed accordingly.  However, in this 

case weights should be applied in such a way to penalize less 

models that encode well for data from states that are close to 

the original state.  It would be interesting to compare 

performance of this method to existing methods for 

continuous state decoding as a way of outlining the effect of 

introducing novel data in neuron selection. 

In closing, this new method for neuronal selection has 

succeeded in both assisting decoding and highlighting 

neurons well tuned to a specific model structure.  The 

method can also be easily generalized to many different 

models and thus shows much promise for model based 

decoding. 

REFERENCES 

[1] A. Georgopoulos, J. Kalaska, R. Caminiti, and J. Massey, “On the 
relations between the direction of two-dimensional arm movements 

and cell discharge in primate motor cortex,” J. Neurosci., vol. 2, pp. 

1527–1537, 1982. 
[2] A. P. Georgopoulos, A. B. Schwartz, and R. E. Kettner, “Neuronal 

population coding of movement direction,” Science, vol. 233, pp. 

1416–1419, 1986. 
[3] D. W. Moran and A. B. Schwartz, “Motor cortical activity during 

drawing movements: Population representation during spiral tracing,” 

J. Neurophysiol., vol. 82, pp. 2693–2704, 1999. 
[4] J. C. Sanchez, D. Erdogmus, J. C. Principe, J. Wessberg, and M. 

Nicolelis, “A comparison between nonlinear mappings and linear state 

estimation to model the relation from motor cortical neuronal firing to 
hand movements,” presented at the SAB Workshop on Motor Control 

in Humans and Robots: On the Interplay of Real Brains and Artificial 

Devices, Scotland, U.K., 2002. 
[5] E.V. Evarts, C. Fromm, J. Kroller, and V.A. Jennings, "Motor Cortex 

Control of Finely Graded Forces," J. Neurophysiol, vol. 49, pp.119-

1215, 1983. 
[6] S.H. Scott and J.F. Kalaska, "Reaching Movements with Similar Hand 

Paths but Different Arm Orientations.  I.  Activity of Individual Cells 

in Motor Cortex," J. Neurophysiol, vol. 77, pp. 826-852, 1997. 
[7] U. T. Eden, W.  Truccolo, M. R. Fellows, J. P. Donoghue,  and E. N. 

Brown, “Reconstruction of hand movement trajectories from a 

dynamic ensemble of spiking motor cortical neurons,” in Proceedings 
of the IEEE 26th Annual International Conference of the Engineering 

in Medicine and Biology Society (EMBC ’04), vol. 6, pp. 4017–4020, 

San Francisco, Calif, USA, September 2004. 
[8] D. R. Kipke, R. J. Vetter, J. C. Williams, and J. F. Hetke, “Silicon-

substrate intracortical microelectrode arrays for long-term recording of 

neuronal spike activity in cerebral cortex,” IEEE Transactions on 
Neural Systems and Rehabilitation Engineering, vol. 11, no. 2, pp. 

151-155, 2003. 

[9] R. Wahnoun, J. He, and S. I. Helms-Tillery, “Selection and 
parameterization of cortical neurons for neuroprosthetic control,” 

Journal of Neural Engineering, vol. 3, no.2, pp. 162-171, 2006. 

[10] J. C. Sanchez, J. M. Carmena, M. A. Lebdev, M. A. L. Nicoleis, J. G. 
Harris, and J. C. Principe, “Ascertaining the importance of neurons to 

develop better brain-machine interfaces,” IEEE Transactions on 

Biomedical Engineering, vol. 51, no. 6, pp. 943-953, 2004. 
[11] G. Singhal, V. Aggarwal, S. Acharya, J. Aguayo, J. He, and N. 

Thakor, “Ensemble Fractional Sensitivity: A Quantitative Approach to 

Neuron Selection for Decoding Motor Tasks,” Computational 
Intelligence and Neuroscience, Vol. 2010, Article ID 68420, 2010. 

[12] M. Saleh, K. Takahashi, Y. Amit, and N. G. Hatsopoulos, “Encoding 

of Coordinated Grasp Trajectories in Primary Motor Cortex,” J. 
Neurosci., vol. 30, no. 50, pp. 17079-17090, 2010. 

[13] E. N. Brown, “Theory of point processes for neural systems,” in 
Methods and Models in Neurophysics (Chow, C. C. ). Paris: Elsevier, 

2005, ch. 14, pp. 691–726. 

[14] U. T. Eden, L. M. Frank, R. Barbieri, V. Solo, and E. N. Brown,  
“Dynamic analysis of neural encoding by point process adaptive  

filtering,” Neural Comput., vol. 16, pp. 971–998, 2004. 

[15] E. N. Brown, L. M. Frank, D. Tang, M. C. Quirk, and M. A. Wilson, 
“A Statistical Paradigm for Neural Spike Train decoding Applied to 

Position Prediction from Ensemble Firing Patterns of Rat 

Hippocampal Place Cells,” J. Neurosci. vol. 18, no. 18, pp. 7411-
7425, 1998. 

[16] E. N. Brown, R. Barbieri, U. T. Eden, and L. M. Frank, “Likelihood 

methods of neural data analysis,” in Computational Neuroscience: A 
Comprehensive Approach (Feng, J. ). London: CRC, 2003, ch. 9, pp. 

253–286. 

[17] M. H. Schieber, "Individuated finger movements of rhesus monkeys: a 
means of quantifying the independence of the digits," J Neurophysiol, 

vol. 65, pp. 1381-91, Jun 1991. 

[18] E. N. Brown, R. Barbieri, V. Ventura, R. E. Kass, and L. M. Frank, 
“The time-rescaling theorem and its application to neural spike train 

data analysis,” Neural Comput, vol. 14, pp. 325–346, 2002. 

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Neuron Pool Size

D
ec

od
in

g 
A
cc

ur
ac

y

Rand (20ms)

Rand (40ms)

Rand (60ms)

Optimal (20ms)

Optimal (40ms)

Optimal (60ms)

4608


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

