

Abstract—This work discusses the architectural layout and

performance results of a SoC design for parallel neural signal

processing. Architectural framework for scalability and scalar

reconfigurability are presented. Architectural requirements for

massive parallelism in neural recordings are presented.

Prototype architecture with dual processors and multi-level

reconfigurable platform design is presented. Functional

modules of the platform include real-time spike detector and

sorter for several hundreds of neural channels. Performance of

the platform for a 300 channel interface is also discussed.

I. INTRODUCTION

eural networks of the brain often demonstrate

spectacular processing efficiency under various

circumstances, ranging from simpler sensory responses to

much higher levels of complex cognition tasks. One of the

key mechanisms for superior brain functionality is the

hierarchical and massive parallelism exhibited by neuronal

units [1]. These neuronal interconnections exhibit modalities

of both localized organization and global functionality,

tuned by synapses that are plastic and adaptive. Several

researchers are attempting to understand the functionality of

the brain using these neural signals [2][3][4][5], technically

as a method of system identification using reverse

engineering. Furthermore, neural prosthetics and brain-

machine interfaces (BMIs), in general, harness signals that

flow in these interconnections to control external devices.

While these advancements greatly accelerated in signal

acquisition and interface techniques, they are often limited

by the number of recording channels that can be processed

in parallel and in real-time [6]. Information retrieval in real-

time from several neural interface channels is needed for

successful BMIs of the future as well to further the

understanding of brain functionality under the perspective of

parallel architecture. In recent years, interest in developing

neural signal processing algorithms that can be realized in

hardware as well as the hardware architecture that can

operate massively parallel signals is growing.

Few of the hardware substrates that are put to use for neural

decoding include ASICs, DSP chips, FPGAs and GPUs.

However, the architectural requirements and the choice of a

This work was supported in part by the NSF Career Award under Grant

No. 0846351.

Karthikeyan Balasubramanian is a Ph.D. candidate at the Neural

Instrumentation Lab, Temple University, Philadelphia, PA 19122 USA

(email: bkintex@temple.edu)

Iyad Obeid is with the Neural Instrumentation Lab, Temple University,

Philadelphia, PA 19122 USA (phone: 215-204-3795; email:

iobeid@temple.edu)

particular hardware platform are determined, generally, by

the experiment in question and the suitability of available

algorithms.

In this work, the generic architectural layout needed for

neural signal processing in a massive scale is discussed. A

System-on-Chip (SoC) approach is presented for FPGA

hardware realization that features (a) process

parallelizability (b) multi-scale and partial reconfigurability,

and (c) real-time operability. A prototype design

incorporating a dual processor system and essential neural

signal processing routines such as real-time spike detection

and sorting is presented. The system operation is

demonstrated for a 300 channel neural interface.

II. MASSIVE PARALLELISM: ARCHITECTURAL LAYOUT

Parallel processing and concurrent computation have been

available for more than five decades and, multi-core and

multiple processor platforms have been proliferating in

recent years. These are intended to parallelize the underlying

hardware operations for faster and efficient processing.

Despite their huge operating efficiency, they were not found

suitable for translational research such as BMIs and

prosthetic device developments. This is partly due to their

heavy reliance on their instruction set architecture and the

intermediate hardware-software interface to achieve

parallelism.

Real-time embedded systems and GPUs are used in several

neural processing applications where the computational

processes are mostly SIMD (single instruction multiple

data). Typically, they operate on standard computational

processes. On the other hand, DSP chips have strong

knowledge base of software for various signal processing

applications, but are often limited by the amount of

parallelization possible at the software level given a fixed

instruction set architecture. VLIW (very long instruction

word) architectures explore instruction level parallelism, but

still under the aegis of fixed architecture.

Parallelization can be achieved at various levels of a SoC

design. Typically, code-level parallelization relies on

compilers that can identify possible degrees of parallelism in

the code and the suitability of parallel code execution on a

given hardware. They offer the least degree of flexibility in

terms of parallelization. Multiple processor systems use

“hypervisors” to distribute the computational load across the

different processors available. The most fine-grained

parallelism could be achieved at the algorithm level, given

the algorithm offers suitability.

Massively Parallel Neural Signal Processing: System-on-Chip

Design with FPGAs

Karthikeyan Balasubramanian and Iyad Obeid, Member, IEEE

N

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 4609

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011

Highly parallelizable algorithms for neural signal

processing are still nascent. But, at the same time, several

prevailing concepts of standard processing methodology can

be tailored to function in conjunction with parallel

architectures to meet the signal processing needs of a neural

interface. In general, the architectural layout for massively

parallel neural signal processing can be confined to (a)

scalable and hardware parallelizable algorithms, (b)

reconfigurable and adaptive architecture at hardware level

and (c) operate in real-time and in synchrony across

thousands of channels with software level accessibility.

Contemporary FGPAs possess several thousands to few

million “uncommitted” logic gates that can be configured

(and, reconfigured) towards specific tasks. The suitability of

FPGAs towards achieving the architectural layout for neural

signal processing is discussed in subsequent sections.

A. Scalability and Hardware Parallelization

Algorithms that claim to be scalable and parallelizable

typically need substrates with spatial parallelism.

Implementation-dependent hardware algorithms for various

signal processing routines should be able to be implemented

either as inter-dependent processes or completely

independent instances on the same substrate offering

physical scalability and parallelism. The raw computational

logic cells of FPGAs offer substantial spatial parallelism.

Alternatively, algorithms that use hardware controllers for

their data-path can utilize the high fan-out capacities of

FPGAs to drive multiple instances of an algorithm. Looping

constructs of processing algorithms can be unrolled into

parallel processing entities within an FPGA to address the

hardware parallelization requirement. Finally, the hardware

should support mixed-signal and multi-rate processing.

B. Reconfigurable and Adaptive Architecture

The choice of an algorithm or a combination of algorithms

for neural signal processing mostly relies on ad-hoc

selection processes by researchers. To facilitate selection of

algorithms for real-world applications and to estimate their

suitability for hardware operations, the architectural layout

should possess the property of reconfigurability. Hardware

implemented algorithms should have necessary interface

constructs that allow partial or complete reconfiguration.

Also, the architecture should offer the flexibility of

recruiting portions of the system, when necessity arises. This

can be analogous to the situation of muscle motor unit

recruitment or distributed computing where additional

elements are included or excluded based on instantaneous

process load.

C. Real-time Operation and Software Interface

While it is a standard requirement for BMIs to operate in

real-time in most of the applications, it is often related to the

software that controls the platform. Real-time operation

managed in entirety via software is dependent on number of

subordinate peripherals, interrupt latency and task response

time. For the purposes of massive parallelism in real-time, a

software based solution may not be adequate. Hence, a

hybrid approach that has hierarchical controller design with

a low-level hardware controller targeted for hardware

algorithms and a high-level controller based on software

interface. High-level negotiation tasks should be controlled

at the software layer while the interrupts generated by

algorithm modules should be managed by dedicated

hardware controllers.

III. SOC DESIGN FOR NEURAL SIGNAL PROCESSING

The SoC design implemented on an FPGA allows multiple

scales of hardware customization and reconfiguration.

Typically, at the lowest level, algorithm level parallelization

is achieved and simultaneously at the highest level, code

parallelization is possible. Due to the fundamental

reconfigurable feature of FPGA substrates, resource sharing

is highly customizable and lends itself as a suitable platform

for SoC designs.

The prototype design presented here comprises two soft-

core processors that manage the underlying tasks of neural

signal processing. A non-linear energy operator-based

(NEO) [7] spike detector and a fuzzy-logic based spike

sorter [8] were implemented as the processing elements

(referred as p-cores) with individual hardware controllers

that manage the data flow and control flow within these p-

cores. The processors interface with these p-cores via

software drivers, and in conjunction with a real-time kernel

monitors instantaneous outputs of these p-cores needed for

further information retrieval. Communication between the

processor and the p-cores are enabled via the standard

processor local bus (PLB). Fig.2 shows the schematic of the

design implemented in a Virtex-5 LX110T FPGA.

A. Spike Detector

 The function of the spike detector includes (a) detection

of spiking events and (b) extraction of valid spike

Fig.1 Schematic of an architectural layout for BMI hardware with neural

signal processing in real-time and in parallel across thousands of

channels. High levels of parallelizability at the algorithm level and

coarse controls via application level routines are some of the essential

features needed for scalable, reconfigurable and real-time operable

architectures

4610

waveforms from the input neural signals. Neural signals

from the data acquisition module, preceded by the recording

channel ID, are transferred to input buffer of the detector

module. The channel ID is temporarily stored in an

appropriate register so that a detected spike event can be

labeled when the waveform is extracted. The NEO was

implemented as the preprocessor to the neural signal, whose

mathematical representation is given by (1),

���� � 	 ����� 	 	���
 ��. ��� 	 �� (1)

where, ���� is the digitized neural signal and 1≤ δ ≤ 4 is an

integer. The preprocessor essentially emphasizes the

probable spike events and simultaneously attenuates the

noisy regions. The data then flows to the threshold

comparator. Upon detection of a spiking event, the

comparator logic flags a register for the real-time kernel to

recognize. Spike waveform data is channelized into the

output buffer by a select logic. A buffer to retain partial

waveforms, cache LUT and the cache buffer are included to

ensure extraction of complete spike waveforms.

B. Spike Sorter

Extracellular neural recordings from each channel contain

action potential spikes from more than one neuron source.

The primary objective of sorting process is to classify spikes

amongst themselves as well as to separate biologically

relevant spikes from noisy spike-like artifacts using

extracted features. Spike data from the output buffer of the

spike detector module is fed into the input buffer of the

sorter by the central processor. The normalized spike data is

then presented to the spike sorter module and the fuzzy spike

score is determined. The output buffer that contains the

spike score can be accessed by the processor or can be fed to

a linear comparator for further processing. The linear

comparator used preset threshold to compare the output

fuzzy spike scores and ascertain a class label to the spike

(for example, if the score range between 0.51 and 0.75, the

spike might be from neuron-A and so on).

C. Controller Design

The real-time firmware functions as the top-level controller

for the platform. Low-level controllers manage the control

signals within the module. The flag signals that emanate

from the p-cores are monitored by the real-time firmware

and subsequently instructional control signals are issued to

them via the PLB channel. Upon reset, the real-time

firmware creates four threads, one for each of the tasks (see

Fig.3), (a) to manage the data flow between the data

acquisition and the input of the spike detector (DETI), (b) to

monitor the spike detection (DETO), (c) to manages the data

flow between the detector and sorter modules (SRTI) and (d)

to monitor the spike sorting process (SRTO). The threads

DETI and DETO are generated from the firmware of the

Processor-1 and the remaining two threads are assigned from

the Processor-2. A round-robin scheduling was used to share

the processor time between the tasks. Both the processors

operate in parallel and controls the p-cores connected to

them.

Fig.2 Schematic of SoC design implemented on Virtex-5 LX110T

FPGA. The central processors are connected to the firmware layer via the

LMBs. Communication between the processors and other subsequent

layers are channelized through PLBs. Two PLBs are interconnected

using a PLB-bridge. Both processors behave as masters of their

respective PLBs, while all the other peripherals and p-cores are

connected as slaves. Embedded system architectures offer the advantage

of synchronizing various functions of a neural signal processor, as well

as allowing signal integration over multiple channels

Fig.3 The top diagram shows the sequencing of the threads DETI and

DETO by the Processor-1. Each thread operates for a pre-determined

time and control transfer repeats till the processor is reset or turned off.

The threads are added with processor overhead as determined by the

compiler to enable proper scheduling. The bottom diagram is the thread

scheduling in Processor-2. The interrupt latency was determined to be

5.2 usec. Time consumption by the different tasks are also given.

4611

IV. RESULTS

Implementation was carried out through high-level synthesis

of the modules, i.e., the behavioral codes of the various

functions were developed as high-level language codes

which were then converted into hardware synthesizable

descriptions. Hardware resources consumed by the platform

in a Virtex-5 FPGA are given in Table I.

The platform was tested using a set of 100 channels of

neural data, each comprising 10 seconds of extracellular

neural recording. The test data set was created from pre-

recorded extracellular signals obtained from the three animal

species: an owl monkey, a macaque and a rat. The data were

pre-loaded on to an external RAM and synchronously

accessed for processing. The data stored in the RAM

memory were originally sampled at 31.25 kHz.

To determine the percent correct detection of the spike

detector and the percent correct classification of the sorter

when they are operating in synchronous with the processor,

data vectors from the p-cores were stored in to an external

storage via the SATA port. In case of the spike sorter, spike

scores and the channel ID were logged in the external

memory and were then compared with the software results

(see Table II).

V. DISCUSSIONS

Simultaneous recording of neural activity is a widely used

and necessary process in understanding neural interactions

and the functions of the brain. The number of electrodes

used in invasive recordings has been doubling every 7 years

since the introduction of multi-electrode recording in the

1950s. It has also been understood that the mutual

information obtained from interacting neurons increases

with increasing number of observed neurons, allowing better

decoding of brain signals [9]. These factors emphasize the

importance of highly parallelized computational

infrastructure needed for neural signal processing.

Considering the various hardware choices, FPGAs offer

higher degrees of parallelism, partly because of the inherent

spatial parallelism of the substrate itself. Furthermore, the

SoC design discussed here utilizes a low level controller for

the p-cores and a high level controller to manage processor-

level functions. This hybrid controller overcomes the

unwanted interrupt latency experienced by processor-

managed architectures. The low level control signals are

managed by the modules themselves without the need for

processor interrupts. Higher level control signals uses

interrupts for task scheduling without disrupting the data

pipeline in the modules. This allows the architecture to have

improved bandwidth efficiency. The processor running at

100 MHz and the p-cores running at ~10 MHz, the platform

is capable of handling 300 recording channels in parallel.

VI. CONCLUSION

Computational demands for parallel neural recordings are

becoming critical with the increase in the number of

recording channels. A generic system-on-chip architecture

was presented. Scalable and parallelizable algorithms are

key elements for a successful neural signal processing

platform. A standard non-linear energy operator-based spike

detector and a novel fuzzy logic-based spike sorter were

implemented in the system. FPGA substrate was used for

implementing the design and offers higher degrees of

scalability, reconfigurability and parallelizability.

REFERENCES

[1] O. Sporns, Networks of the brain. Cambridge, Mass, MIT Press, 2011.

[2] J. P. Donoghue, "Connecting cortex to machines: recent advances in

brain interfaces," Nat Neurosci, 2002

[3] M. D. Linderman, et al., "Signal Processing Challenges for Neural

Prostheses," Signal Processing Magazine, IEEE, vol. 25, pp. 18-28,

2008

[4] N. Thakor, “Frontiers of Neuroengineering with focus on brain

machine interface and neural prostheses" in BIBE 2008. 8th IEEE

International Conference on, 2008, pp. 1-2

[5] G. Charvet, et al., "A modular 256-channel Micro Electrode Array

platform for in vitro and in vivo neural stimulation and recording:

BioMEA" in EMBC, 2010 Annual International Conference of the

IEEE, 2010, pp. 1804-1807

[6] K. Balasubramanian and I. Obeid, "Reconfigurable embedded system

architecture for next-generation Neural Signal Processing," in EMBC,

2010 Annual International Conference of the IEEE, 2010, pp. 1691-

1694

[7] I. Obeid and P. D. Wolf, "Evaluation of spike-detection algorithms for

a brain-machine interface application," Biomedical Engineering, IEEE

Transactions on, vol. 51, pp. 905-911, 2004.

[8] K. Balasubramanian and I. Obeid, "Fuzzy logic-based spike sorting

system," Journal of Neuroscience Methods, vol. In Press, Uncorrected

Proof.

[9] I. H. Stevenson and K. P. Kording, "How advances in neural recording

affect data analysis," Nat Neurosci, vol. 14, pp. 139-142, 2011.

TABLE II

PERFORMANCE OF THE HARDWARE PLATFORM COMPARED WITH THE

SOFTWARE IMPLEMENTATION

Parameter Platform Matlab

Number of spikes

detected
206,422 206,422

Percent correct

classification
91% 91%

Mean square error in fuzzy score estimates of the hardware and

software implementations were less than 0.001, hence not significant.

TABLE I

HARDWARE RESOURCE CONSUMPTION BY THE P-CORES AND THE SOFT-

CORE PROCESSOR SYNTHESIZED FOR THE VIRTEX-5 LX110T

Module Hardware Consumption
Percent

Utilization

Spike

Detector

Slice Registers

Slice LUTs

DSP Slices

BlockRAM

Total Slices

774

4454

18

32 KB

1855

2%

6%

28%

1%

10%

Spike

Sorter

Slice Registers

Slice LUTs

DSP Slices

BlockRAM

Total Slices

854

5294

1

288 KB

2035

1%

7%

1%

5%

11%

Microblaze

Processor

Slice LUTs

Total Slices

1928

482

4%

8%

Total Resource utilization 29%

4612

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

