
  

  

Abstract—This work discusses the architectural layout and 

performance results of a SoC design for parallel neural signal 

processing. Architectural framework for scalability and scalar 

reconfigurability are presented. Architectural requirements for 

massive parallelism in neural recordings are presented. 

Prototype architecture with dual processors and multi-level 

reconfigurable platform design is presented. Functional 

modules of the platform include real-time spike detector and 

sorter for several hundreds of neural channels. Performance of 

the platform for a 300 channel interface is also discussed. 

I. INTRODUCTION 

eural networks of the brain often demonstrate 

spectacular processing efficiency under various 

circumstances, ranging from simpler sensory responses to 

much higher levels of complex cognition tasks. One of the 

key mechanisms for superior brain functionality is the 

hierarchical and massive parallelism exhibited by neuronal 

units [1]. These neuronal interconnections exhibit modalities 

of both localized organization and global functionality, 

tuned by synapses that are plastic and adaptive.  Several 

researchers are attempting to understand the functionality of 

the brain using these neural signals [2][3][4][5], technically 

as a method of system identification using reverse 

engineering. Furthermore, neural prosthetics and brain-

machine interfaces (BMIs), in general, harness signals that 

flow in these interconnections to control external devices. 

While these advancements greatly accelerated in signal 

acquisition and interface techniques, they are often limited 

by the number of recording channels that can be processed 

in parallel and in real-time [6]. Information retrieval in real-

time from several neural interface channels is needed for 

successful BMIs of the future as well to further the 

understanding of brain functionality under the perspective of 

parallel architecture. In recent years, interest in developing 

neural signal processing algorithms that can be realized in 

hardware as well as the hardware architecture that can 

operate massively parallel signals is growing. 

Few of the hardware substrates that are put to use for neural 

decoding include ASICs, DSP chips, FPGAs and GPUs. 

However, the architectural requirements and the choice of a 
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particular hardware platform are determined, generally, by 

the experiment in question and the suitability of available 

algorithms. 

In this work, the generic architectural layout needed for 

neural signal processing in a massive scale is discussed. A 

System-on-Chip (SoC) approach is presented for FPGA 

hardware realization that features (a) process 

parallelizability (b) multi-scale and partial reconfigurability, 

and (c) real-time operability. A prototype design 

incorporating a dual processor system and essential neural 

signal processing routines such as real-time spike detection 

and sorting is presented. The system operation is 

demonstrated for a 300 channel neural interface.  

II. MASSIVE PARALLELISM: ARCHITECTURAL LAYOUT 

Parallel processing and concurrent computation have been 

available for more than five decades and, multi-core and 

multiple processor platforms have been proliferating in 

recent years. These are intended to parallelize the underlying 

hardware operations for faster and efficient processing. 

Despite their huge operating efficiency, they were not found 

suitable for translational research such as BMIs and 

prosthetic device developments. This is partly due to their 

heavy reliance on their instruction set architecture and the 

intermediate hardware-software interface to achieve 

parallelism. 

Real-time embedded systems and GPUs are used in several 

neural processing applications where the computational 

processes are mostly SIMD (single instruction multiple 

data). Typically, they operate on standard computational 

processes. On the other hand, DSP chips have strong 

knowledge base of software for various signal processing 

applications, but are often limited by the amount of 

parallelization possible at the software level given a fixed 

instruction set architecture. VLIW (very long instruction 

word) architectures explore instruction level parallelism, but 

still under the aegis of fixed architecture. 

Parallelization can be achieved at various levels of a SoC 

design. Typically, code-level parallelization relies on 

compilers that can identify possible degrees of parallelism in 

the code and the suitability of parallel code execution on a 

given hardware. They offer the least degree of flexibility in 

terms of parallelization. Multiple processor systems use 

“hypervisors” to distribute the computational load across the 

different processors available. The most fine-grained 

parallelism could be achieved at the algorithm level, given 

the algorithm offers suitability. 
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Highly parallelizable algorithms for neural signal 

processing are still nascent. But, at the same time, several 

prevailing concepts of standard processing methodology can 

be tailored to function in conjunction with parallel 

architectures to meet the signal processing needs of a neural 

interface. In general, the architectural layout for massively 

parallel neural signal processing can be confined to (a) 

scalable and hardware parallelizable algorithms, (b) 

reconfigurable and adaptive architecture at hardware level 

and (c) operate in real-time and in synchrony across 

thousands of channels with software level accessibility. 

Contemporary FGPAs possess several thousands to few 

million “uncommitted” logic gates that can be configured 

(and, reconfigured) towards specific tasks. The suitability of 

FPGAs towards achieving the architectural layout for neural 

signal processing is discussed in subsequent sections. 

A. Scalability and Hardware Parallelization 

Algorithms that claim to be scalable and parallelizable 

typically need substrates with spatial parallelism. 

Implementation-dependent hardware algorithms for various 

signal processing routines should be able to be implemented 

either as inter-dependent processes or completely 

independent instances on the same substrate offering 

physical scalability and parallelism. The raw computational 

logic cells of FPGAs offer substantial spatial parallelism. 

Alternatively, algorithms that use hardware controllers for 

their data-path can utilize the high fan-out capacities of 

FPGAs to drive multiple instances of an algorithm. Looping 

constructs of processing algorithms can be unrolled into 

parallel processing entities within an FPGA to address the 

hardware parallelization requirement. Finally, the hardware 

should support mixed-signal and multi-rate processing. 

B. Reconfigurable and Adaptive Architecture 

The choice of an algorithm or a combination of algorithms 

for neural signal processing mostly relies on ad-hoc 

selection processes by researchers. To facilitate selection of 

algorithms for real-world applications and to estimate their 

suitability for hardware operations, the architectural layout 

should possess the property of reconfigurability. Hardware 

implemented algorithms should have necessary interface 

constructs that allow partial or complete reconfiguration. 

Also, the architecture should offer the flexibility of 

recruiting portions of the system, when necessity arises. This 

can be analogous to the situation of muscle motor unit 

recruitment or distributed computing where additional 

elements are included or excluded based on instantaneous 

process load. 

C. Real-time Operation and Software Interface 

While it is a standard requirement for BMIs to operate in 

real-time in most of the applications, it is often related to the 

software that controls the platform. Real-time operation 

managed in entirety via software is dependent on number of 

subordinate peripherals, interrupt latency and task response 

time. For the purposes of massive parallelism in real-time, a 

software based solution may not be adequate. Hence, a 

hybrid approach that has hierarchical controller design with 

a low-level hardware controller targeted for hardware 

algorithms and a high-level controller based on software 

interface. High-level negotiation tasks should be controlled 

at the software layer while the interrupts generated by 

algorithm modules should be managed by dedicated 

hardware controllers.  

III. SOC DESIGN FOR NEURAL SIGNAL PROCESSING 

 

The SoC design implemented on an FPGA allows multiple 

scales of hardware customization and reconfiguration. 

Typically, at the lowest level, algorithm level parallelization 

is achieved and simultaneously at the highest level, code 

parallelization is possible. Due to the fundamental 

reconfigurable feature of FPGA substrates, resource sharing 

is highly customizable and lends itself as a suitable platform 

for SoC designs. 

The prototype design presented here comprises two soft-

core processors that manage the underlying tasks of neural 

signal processing. A non-linear energy operator-based 

(NEO) [7] spike detector and a fuzzy-logic based spike 

sorter [8] were implemented as the processing elements 

(referred as p-cores) with individual hardware controllers 

that manage the data flow and control flow within these p-

cores. The processors interface with these p-cores via 

software drivers, and in conjunction with a real-time kernel 

monitors instantaneous outputs of these p-cores needed for 

further information retrieval. Communication between the 

processor and the p-cores are enabled via the standard 

processor local bus (PLB). Fig.2 shows the schematic of the 

design implemented in a Virtex-5 LX110T FPGA. 

A. Spike Detector 

 The function of the spike detector includes (a) detection 

of spiking events and (b) extraction of valid spike 

Fig.1 Schematic of an architectural layout for BMI hardware with neural 

signal processing in real-time and in parallel across thousands of 

channels. High levels of parallelizability at the algorithm level and 

coarse controls via application level routines are some of the essential 

features needed for scalable, reconfigurable and real-time operable 

architectures 
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waveforms from the input neural signals. Neural signals 

from the data acquisition module, preceded by the recording 

channel ID, are transferred to input buffer of the detector 

module. The channel ID is temporarily stored in an 

appropriate register so that a detected spike event can be 

labeled when the waveform is extracted. The NEO was 

implemented as the preprocessor to the neural signal, whose 

mathematical representation is given by (1), 
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where, ���� is the digitized neural signal and 1≤ δ ≤ 4 is an 

integer. The preprocessor essentially emphasizes the 

probable spike events and simultaneously attenuates the 

noisy regions. The data then flows to the threshold 

comparator. Upon detection of a spiking event, the 

comparator logic flags a register for the real-time kernel to 

recognize. Spike waveform data is channelized into the 

output buffer by a select logic. A buffer to retain partial 

waveforms, cache LUT and the cache buffer are included to 

ensure extraction of complete spike waveforms. 

B. Spike Sorter 

Extracellular neural recordings from each channel contain 

action potential spikes from more than one neuron source. 

The primary objective of sorting process is to classify spikes 

amongst themselves as well as to separate biologically 

relevant spikes from noisy spike-like artifacts using 

extracted features. Spike data from the output buffer of the 

spike detector module is fed into the input buffer of the 

sorter by the central processor. The normalized spike data is 

then presented to the spike sorter module and the fuzzy spike 

score is determined. The output buffer that contains the 

spike score can be accessed by the processor or can be fed to 

a linear comparator for further processing. The linear 

comparator used preset threshold to compare the output 

fuzzy spike scores and ascertain a class label to the spike 

(for example, if the score range between 0.51 and 0.75, the 

spike might be from neuron-A and so on). 

C. Controller Design 

The real-time firmware functions as the top-level controller 

for the platform. Low-level controllers manage the control 

signals within the module. The flag signals that emanate 

from the p-cores are monitored by the real-time firmware 

and subsequently instructional control signals are issued to 

them via the PLB channel. Upon reset, the real-time 

firmware creates four threads, one for each of the tasks (see 

Fig.3), (a) to manage the data flow between the data 

acquisition and the input of the spike detector (DETI), (b) to 

monitor the spike detection (DETO), (c) to manages the data 

flow between the detector and sorter modules (SRTI) and (d) 

to monitor the spike sorting process (SRTO). The threads 

DETI and DETO are generated from the firmware of the 

Processor-1 and the remaining two threads are assigned from 

the Processor-2. A round-robin scheduling was used to share 

the processor time between the tasks. Both the processors 

operate in parallel and controls the p-cores connected to 

them. 

Fig.2 Schematic of SoC design implemented on Virtex-5 LX110T 

FPGA. The central processors are connected to the firmware layer via the 

LMBs. Communication between the processors and other subsequent 

layers are channelized through PLBs. Two PLBs are interconnected 

using a PLB-bridge. Both processors behave as masters of their 

respective PLBs, while all the other peripherals and p-cores are 

connected as slaves. Embedded system architectures offer the advantage 

of synchronizing various functions of a neural signal processor, as well 

as allowing signal integration over multiple channels 

Fig.3 The top diagram shows the sequencing of the threads DETI and 

DETO by the Processor-1. Each thread operates for a pre-determined 

time and control transfer repeats till the processor is reset or turned off. 

The threads are added with processor overhead as determined by the 

compiler to enable proper scheduling. The bottom diagram is the thread 

scheduling in Processor-2. The interrupt latency was determined to be 

5.2 usec. Time consumption by the different tasks are also given. 
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IV. RESULTS 

Implementation was carried out through high-level synthesis 

of the modules, i.e., the behavioral codes of the various 

functions were developed as high-level language codes 

which were then converted into hardware synthesizable 

descriptions. Hardware resources consumed by the platform 

in a Virtex-5 FPGA are given in Table I.  

The platform was tested using a set of 100 channels of 

neural data, each comprising 10 seconds of extracellular 

neural recording. The test data set was created from pre-

recorded extracellular signals obtained from the three animal 

species: an owl monkey, a macaque and a rat. The data were 

pre-loaded on to an external RAM and synchronously 

accessed for processing. The data stored in the RAM 

memory were originally sampled at 31.25 kHz. 

To determine the percent correct detection of the spike 

detector and the percent correct classification of the sorter 

when they are operating in synchronous with the processor, 

data vectors from the p-cores were stored in to an external 

storage via the SATA port. In case of the spike sorter, spike 

scores and the channel ID were logged in the external 

memory and were then compared with the software results 

(see Table II). 

V. DISCUSSIONS 

Simultaneous recording of neural activity is a widely used 

and necessary process in understanding neural interactions 

and the functions of the brain. The number of electrodes 

used in invasive recordings has been doubling every 7 years 

since the introduction of multi-electrode recording in the 

1950s. It has also been understood that the mutual 

information obtained from interacting neurons increases 

with increasing number of observed neurons, allowing better 

decoding of brain signals [9]. These factors emphasize the 

importance of highly parallelized computational 

infrastructure needed for neural signal processing. 

Considering the various hardware choices, FPGAs offer 

higher degrees of parallelism, partly because of the inherent 

spatial parallelism of the substrate itself. Furthermore, the 

SoC design discussed here utilizes a low level controller for 

the p-cores and a high level controller to manage processor-

level functions. This hybrid controller overcomes the 

unwanted interrupt latency experienced by processor-

managed architectures. The low level control signals are 

managed by the modules themselves without the need for 

processor interrupts. Higher level control signals uses 

interrupts for task scheduling without disrupting the data 

pipeline in the modules. This allows the architecture to have 

improved bandwidth efficiency. The processor running at 

100 MHz and the p-cores running at ~10 MHz, the platform 

is capable of handling 300 recording channels in parallel.  

VI. CONCLUSION 

Computational demands for parallel neural recordings are 

becoming critical with the increase in the number of 

recording channels. A generic system-on-chip architecture 

was presented. Scalable and parallelizable algorithms are 

key elements for a successful neural signal processing 

platform. A standard non-linear energy operator-based spike 

detector and a novel fuzzy logic-based spike sorter were 

implemented in the system. FPGA substrate was used for 

implementing the design and offers higher degrees of 

scalability, reconfigurability and parallelizability. 
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TABLE II 

PERFORMANCE OF THE HARDWARE PLATFORM COMPARED WITH THE 

SOFTWARE IMPLEMENTATION 

Parameter Platform Matlab 

   

Number of spikes 

detected 
206,422 206,422 

Percent correct 

classification 
91% 91% 

Mean square error in fuzzy score estimates of the hardware and 

software implementations were less than 0.001, hence not significant.  

 

 

TABLE I 

HARDWARE RESOURCE CONSUMPTION BY THE P-CORES AND THE SOFT-

CORE PROCESSOR SYNTHESIZED FOR THE VIRTEX-5 LX110T  

Module Hardware Consumption 
Percent 

Utilization 

Spike 

Detector 

Slice Registers 

Slice LUTs 

DSP Slices 

BlockRAM 

Total Slices 

774 

4454 

18 

32 KB 

1855 

2% 

6% 

28% 

1% 

10% 

Spike 

Sorter 

 

Slice Registers 

Slice LUTs 

DSP Slices 

BlockRAM 

Total Slices 

 

854 

5294 

1 

288 KB 

2035 

 

1% 

7% 

1% 

5% 

11% 
 

Microblaze 

Processor 

 

Slice LUTs 

Total Slices 

 

1928 

482 

 

4% 

8% 

Total Resource utilization 29% 
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