
  

 

Abstract—Real-time computation, portability and flexibility 
are crucial for practical brain-machine interface (BMI) 
applications. In this work, we proposed Hardware Processing 
Modules (HPMs) as a method for accelerating BMI 
computation. Two HPMs have been developed. One is the 
field-programmable gate array (FPGA) implementation of 
spike sorting based on probabilistic neural network (PNN), and 
the other is the FPGA implementation of neural ensemble 
decoding based on Kalman filter (KF). These two modules were 
configured under the same framework and tested with real data 
from motor cortex recording in rats performing a lever-pressing 
task for water rewards. Due to the parallelism feature of FPGA, 
the computation time was reduced by several dozen times, while 
the results are almost the same as those from Matlab 
implementations. Such HPMs provide a high performance 
coprocessor for neural signal computation.  

I. INTRODUCTION 

RAIN-machine interface (BMI) aims to build a 
completely new communication channel between brain 

and external world to restore lost capabilities for people with 
damaged sensory/motor functions. One key point of BMI is 
the real-time mapping from high-throughput neural signals to 
external kinematic variables [1]. Although a general-purpose 
processing infrastructure (e.g. a PC) is convenient for 
implementing the mapping, its currently computational 
power cannot meet the real-time performance of some 
complicated algorithms in BMI studies [2]. Meanwhile, 
practical BMIs must be reconfigurable, portable and flexible, 
which current platforms cannot meet too. So it is necessary to 
find a higher performance platform to achieve efficient 
processing and practical applications. 
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Recently, some high performance hardware platforms have 
been brought into BMI research to provide possible solution 
of current problems. Mehdi et al. [3] designed an implantable 
Very Large Scale Integrated circuits (VLSI) architecture 
for real time spike sorting, which reduces telemetry 
bandwidth of BMIs and improves the practicality of BMI 
systems in clinical applications. Both Digital Signal 
Processors (DSP) and FPGA based neural signal processing 
(NSP) were proposed for real time processing and portable 
computation platform [4-5]. Although VLSI implementation 
can provide high processing speed and compact structures, it 
is more time consuming and cannot be reconfigured. DSP 
based embedded system can take advantage of its dedicated 
floating point/integer multiplier and highly specialized 
processor, but their architecture is sequential, which is not 
consistent with the parallel characteristics of neural channels.  
FPGA preserves parallel processing architecture that can 
simultaneously execute a variety of operations. Besides, 
FPGA has many dedicated computing units which can further 
reduce the computation time.  Moreover, FPGA can be 
reconfigured and scaled to specific application and has the 
advantages of lower cost, higher density and shorter design 
cycle. Recently some researchers have made full use of 
parallelism characteristics of FPGA to process neural signal 
and dramatically improved the computation speed [6-8]. 
Especially, Zhou et al. [8] proposed the FPGA 
implementation of neural network for decoding motor 
cortical ensemble recordings in BMIs and got impressive 
results. 

This work tries to bring forward another framework, i.e. 
FPGA implementation of hardware processing modules 
(HPMs) as coprocessors for neural signal processing. HPMs 
realize BMI algorithms on hardware platform which can 
accelerate processing. Moreover, HPMs are highly modular 
and have common interfaces which can facilitate different 
applications. Implementing the signal processing steps only 
rather than the entire BMI frame work on the hardware 
platform is a compromise way that can take advantage of both 
general-purpose unit and dedicated hardware computation 
modules. Due to its inherent parallel computing ability, we 
chose FPGA as the hardware processing platform for two 
HPMs, probabilistic neural network (PNN) based spike 
sorting and Kalman filter (KF) based neural ensemble 
decoding. This paper is organized as follows. Part II 
introduces the experimental system setup. Part III describes 
the details of the two HPMs realization. Part IV demonstrates 
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the experiment results. Part V discusses the performance and 
concludes the paper. 

II. SYSTEM ARCHITECTURE 

A. Neural Data Acquisition 

The experiment paradigm is similar to that described in [8]. 
In brief, rats were trained to learn pressing a lever using their 
forelimb for water reward, i.e. each rat press a lever equipped 
in an operant conditioning chamber and then get a sip of 
water reward. After an animal achieved a good task 
performance level, a chronic 16-channel microwire 
electrodes array was implanted into the forepaw region of its 
primary motor cortex (M1). The 16-channel neural signals 
were recorded using Cerebus Data Acquisition System 
(Cyberkinetics Inc., USA)  at a sample rate of 30 KHz when 
the experiments were carried out. And, the pressure of the 
lever, which is the indicator of the forepaw position, was 
recorded synchronously by a pressure sensor at a sample rate 
of 500Hz for neural mapping. Spikes were detected 
automatically in real time through a thresholding method in 
the recording system. Both neural signals and lever pressure 
signals were stored for offline algorithm evaluation and 
FPGA test. All the experimental procedures were approved 
by the Animal Care Committee at Zhejiang University.  

B. System Setup 

The Xilinx Virtex-6 FPGA is chosen to implement the 
HPMs in this application. Built on a 40 nm copper CMOS 
process technology, Virtex-6 FPGAs offer 50% lower power, 
20% lower cost and higher-speed transceiver capabilities than 
the previous generation (e.g. Virtex-5). On the FPGA board, 
a soft processor, namely MicroBlaze, is used to manage state 
logic of processing blocks and communicate with external 
master. It is configured under the Xilinx Embedded Design 
Kit (EDK) environment. In this design, two HPMs, i.e. PNN 
based spike sorting and KF based neural signal decoding, 
were developed and taken as intellectual property (IP) for the 
processor. The system is developed under the Xilinx ISE 11.4 
Foundation Design Software Environment using Verilog 
HDL. Both Matlab and FPGA based realization are 
developed for evaluation and the data type used in FPGA 
implementation is single floating point (32-bit) according to 
IEEE 754 floating point standard. 

III. HPMS IMPLEMENTATION 

A. Spike Sorting Module 

Spike sorting algorithms use the spike shapes information 
recorded in the vicinity of the electrodes to distinguish one or 
more neurons from background activity. Probabilistic neural 
network (PNN), a kind of radial basis networks, is usually 
used for classification problems. PNN was first described by 
Specht in detail [9]. By replacing the sigmoid activation 
function often used in neural networks with an exponential 
function, PNN can compute nonlinear decision boundaries 

approaching the Bayes optimal. PNN with different 
variations can be used for numerous applications, and 
recently, PNN was first used for neural ensemble decoding in 
BMIs [10]. In this paper, PNN is realized for spike sorting 
and its FPGA version is presented. 

The dataflow diagram for FPGA implementation of PNN 
model is shown in Fig.1. Several modules including control 
module, training module, calculation module, and summation 
compare module are realized according to the PNN network 
architectures. Actually, the training process of PNN is just 
configuring training data to blocks of random access memory 
(RAM) for later calculation. Here, 48-point spike data and 
corresponding class numbers are stored into Training RAMs 
and Class RAM, respectively. The calculation module has two 
sub-modules, distance and exponential calculation modules. 
When an input is presented, the calculation module computes 
the distances from the input vector to each training vector and 
feed the results to Exponential Cal module. The activation 
function of the PNN model is the exponentiation function as 
described in (1). 
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where X and iW are input vectors and training vectors 

respectively, and   is the smooth parameter. This study uses 
Taylor series and look-up table (LUT) method to approximate 
the exponentiation function. For one input value x, exp(x) can 
be composed of two parts as follows, 
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where x=z+f, z and f are the integral and fraction part of x, 
respectively. The value of exp (z) is obtained by LUT and the 
value of exp (f) is obtained by the Taylor progression as 
described in (3). 
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where n is the order of the Taylor series for the input value x. 

Here, we choose n = 7 for the hardware approximation of the 
exponentiation function. According to the corresponding 
class number of each spike in the training data, the 

Fig. 1. Dataflow diagram of FPGA implementation of PNN. 
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Summation module sums the value of exp (x) for each class. 
Then by comparing the sum of each class the compare 
module finds the corresponding index of the maximum value, 
which is the class number of the current spike vector input. 

Besides the standard 32-bit single floating point 
implementation, another 16-bit version was designed to 
reduce the FPGA resource utilization. The structure of 16-bit 
floating point is custom-defined, which is composed of 8-bit 
exponent and 7-bit fraction. The 16-bit results are compared 
with 32-bit version to test if lower precision can achieve the 
same sorting accuracy with the reduced resource utilization. 

B. Neural Decoding Module 

Kalman filter (KF) and its variant, a kind of recursive 
Bayesian decoder with guaranteed stability and robustness, 
have been successfully used as a decoding algorithm in BMI 
for several years [11-12]. It provides optimal state estimates 
along with the associated confidence regions for a linear 
Gaussian dynamic system. In the KF framework, the pre-limb 
movement of rat (position, velocity and acceleration) is 
modeled as the system state and the neural firing rate in 
100ms window is modeled as the observation. FPGA 
implement of KF is described in detail as follows. 

The system architecture of FPGA realization of KF is 
showed as in Fig.2. Both encoding (training) and decoding 
(test) parts in the KF algorithm are realized in our FPGA 
implementation. The communication module takes charge of 
exchanging data and state information with the external 
master, the encoding module and decoding module realize the 
KF algorithm by constantly transmitting data to calculate 
module and getting its processing results. And the calculate 
module, including basic processing elements (PEs) and 
matrix inversion modules, is responsible for almost all the 
computation task of KF to achieve a high performance. 

 For accelerating matrix operations, a row/column-based 
method is proposed to construct a novel processing element 
(PE) in our implementation. The row/column based method is 
realized by storing matrix in row/column and simultaneously 
choosing the row/column elements to do the matrix 
operations in one cycle in parallel which is easily realized in 
FPGA architecture by on-chip block RAM resources. The 
structure of the novel PE is shown in Fig.3. This PE consists 
of a floating-point multiplier, a floating-point adder, a block 
RAM, a user defined FIFO, an AND operator, and eight 
multiplexers. It can work as an adder, a subtractor, a 

multiplier, and a Multiply-Accumulator (MAC) depending on 
the state flag. Several novel PEs are enrolled to form a PE 
array for parallel operation. The novel PE has uniform 
structures for easy extension and could be reused for reducing 
resources usage. 

The matrix inversion module is the key part of Kalman 
filter, whose implementation is formulated as:  

 
TQRQRQRB 11111 )(                                      (4) 

 
where B is a real matrix, Q is orthogonal matrix and R is a 
upper triangular matrix. Firstly, QR-decomposition is used to 
obtain an orthogonal matrix Q and an upper triangular matrix 
R; Then the inversion of the triangular matrix and transposed 
matrix of the orthogonal matrix are calculated; finally the 
result is obtained by the inversion of the triangular matrix left 
multiplying transposed orthogonal matrix. All the adders, 
subtrators, multipliers and divisions of floating-point 
involved here are generated by the Xilinx Floating point IP 
with a nine-stage pipeline structure.  

IV. RESULTS 

Three rats were trained and implanted with electrodes 
successfully and the data from one of the rats are used for test 
in this experiment. 

A. PNN Results 

As shown in Fig.4, The representative results of Matlab 
and FPGA-based implementation are compared with standard 
manual spike sorting results in this section. The 32-bit FPGA 
implementation results get a high accuracy of 93.83%, which 
is also as accurate as the Matlab version. The accuracy of 

Fig. 2. System architecture of FPGA realization of KF. 

 
Fig. 3. The structure of the novel processing element proposed. 

Fig. 4. The representative sorting results. (a) original spikes; (b) manual 
sorted result; (c) and (d) FPGA and Matlab sorted results. 
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16-bit version is a little lower (93.67%), but the performace 
drop is neglectable. The results indicate that FPGA 
implementation of PNN is feasible for spike sorting and 
lower precision realization using fewer resources does not 
affect the results in this application. 

B. KF Results 

A total of 32 neurons were sorted from the 16 electrodes 
from one rat and used to decode forelimb pressure trajectory. 

The decoding results of Matlab and FPGA-based 
implementation are compared with the measured pressure 
signals in Fig.5.The peaks correspond to the press action of 
the rat, and it can be seen obviously that all press actions are 
correctly predicted by our FPGA implemention of the KF 
algorithm. The correlation coefficient between Matlab 
decoded predictions and the real trajectory is 0.7725. The 
mean square error between FPGA and Matlab 
implementation results is only 2.3750×10-4, which indicates 
the fidelity of FPGA. 

C. Resource Utilization and Speed 

Table I summarizes the resources utilization in the two 
HPMs implementations and Table II shows the 
corresponding computation time. We can find that both PNN 
and KF based FPGA realization make the computation speed 
improved by several dozen times. The 16-bit version of PNN 
dramatically reduces resources utilization while maintaining 
the same computation time as the 32-bit version. 

V. DISCUSSION AND CONCLUSION 

The two hardware processing modules (HPMs), PNN 
based spike sorting and Kalman based neural decoding, have 
been successfully realized on FPGA platform. They could 
achieve the same results as PC based and greatly reduce the 
computation time. The row/column based method proposed 

for accelerating matrix computation and the novel PE 
designed for saving hardware resources achieved good results. 
The lower precision implementation for spike sorting 
algorithm is also feasible and reduces FPGA resources 
utilization strikingly. With the features of re-configurability 
and scalability, these HPMs, as the coprocessors of the 
general purpose system, could greatly improve the overall 
performance of BMIs. Moreover, they are reusable and 
suitable for portable applications.  Therefore, a wide adoption 
of FPGA in BMI systems will lead to more clinic applications 
of BMIs. 
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TABLE I 
RESOURCES UTILIZATION OF FPGA IMPLEMENTATION OF HPMS 

Resources Available 32-bit PNN 16-bit PNN 32- bit KF

Slice registers 393600 1% 1% 16% 
Slice LUTs 196800 9% 7% 55% 

LUT_FF pairs 24460 11% 18% 24% 
Block RAM 704 1% 1% 45% 

DSP48E 1344 13% 4% 42% 

TABLE II 
COMPUTATION TIME COMPARISON 

Platform 
32-bit 
PNN 

16-bit 
PNN 

32- bit 
KF 

Matlab(Dual CPU 
@2.3GHz) 

300 — 10,447 

FPGA (@100MHz) 6.7 6.7 427 

The unit of the time is μs. 

Fig. 5. Matlab and FPGA-based decoding results are compared with the 
measured pressure signals. 
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