
Modular Particle Filtering FPGA Hardware
Architecture for Brain Machine Interfaces

John Mountney
Electrical & Computer Engineering
Temple University, Philadelphia, PA

Iyad Obeid
Electrical & Computer Engineering
Temple University, Philadelphia, PA

Dennis Silage
Electrical & Computer Engineering
Temple University, Philadelphia, PA

Abstract—As the computational complexities of neural decod-
ing algorithms for brain machine interfaces (BMI) increase,
their implementation through sequential processors becomes
prohibitive for real-time applications. This work presents the
field programmable gate array (FPGA) as an alternative to
sequential processors for BMIs. The reprogrammable hardware
architecture of the FPGA provides a near optimal platform for
performing parallel computations in real-time. The scalability
and reconfigurability of the FPGA accommodates diverse sets
of neural ensembles and a variety of decoding algorithms.
Throughput is significantly increased by decomposing computa-
tions into independent parallel hardware modules on the FPGA.
This increase in throughput is demonstrated through a parallel
hardware implementation of the auxiliary particle filtering signal
processing algorithm.

I. INTRODUCTION

Encoding a biological signal or decoding a stimulus for an
ensemble of neurons is the primary objective of the brain-
machine interface (BMI). Most BMIs are implemented by
adaptive filtering algorithms that use the individual firing rates
of neurons in the ensemble to estimate the underlying affector
signal. Linear adaptive algorithms such as the Weiner filter,
least mean squares (LMS) algorithm and the Kalman filter
have been employed to achieve pseudo electromyographic
signal reconstruction. Nonlinear approaches to the estimation
problem for BMIs include the extended Kalman filter, the
unscented Kalman filter, point process adaptive filters and
particle filters [1].

It has been suggested that particle filters are better suited
for neural signal processing than other estimation algorithms
since they can be applied to non-Gaussian, non-stationary
environments [2]. However, this increase in accuracy comes
at the expense of computational complexity. For this reason,
particle filters have not been currently employed in real-time
BMI applications.

This work describes a parallel hardware architecture that
significantly increases throughput over sequential processing.
This hardware architecture is designed with a field pro-
grammable gate array (FPGA) as the target device. The recon-
figurability of FPGAs allows the device to be reprogrammed
to support various types of neurons and neural parameters as
well as incorporating an array of particles.

II. THE BAYESIAN AUXILIARY PARTICLE FILTER

A major deficiency in particle filtering is the effect that out-
liers or unexpected observations have on filter performance [3].

Auxiliary particle filters address this problem by performing
resampling at time t−1 using the current observation at time t
before updating the particles. More specifically, the Bayesian
auxiliary particle filter (BAPF) introduced by Liu and West
[4] uses a two-stage weight update procedure. The first stage
weights g(t) are computed as an intermediate step used in the
resampling process. The second stage weights w(t) are used
to compute the state estimate x̂(t) as a weighted sum.

The BAPF algorithm for neural decoding can be defined
according to the following steps:

1) The state estimate of the nth particle is updated by
drawing a new sample about its previous estimate with
a specific variance σ2

1 . This is accomplished through
Equation 1 by adding zero-mean random samples Θn

to each element in the state vector.

x̂n(t) = x̂nr (t− 1) + Θn
1 (1)

2) The first stage weight gn(t) of the nth particle is defined
to be proportional to the product of its second stage
weight from the previous iteration wn(t − 1) and the
likelihood of observing the current neural firing activity
N(t) given its state estimate pn(N(t)|x̂n(t)).

gn(t) ∝ wn(t− 1)pn(N(t)|x̂n(t)) (2)

The first stage weights are then normalized so all P
particle weights sum to unity.

3) Particles are then resampled according to their nor-
malized first stage weights and assigned a new state
estimate x̂nr (t). The resampling process replicates highly
weighted particles and discards particles with low
weights. This process was introduce in the sampling
importance resampling (SIR) particle filter [5].

4) The particle state is then updated once more by drawing
random samples about its resampled estimate. This is
similar to Step 1 except that the random samples are
drawn from a distribution with a different variance σ2

2 .

x̂nr (t) = x̂nr (t) + Θn
2 (3)

5) The second stage weights are then computed as a ratio of
the likelihood computed using the resampled estimates
to the likelihood computed using the original estimates.

wn(t) ∝ pn(N(t)|x̂nr (t))

pn(N(t)|x̂n(t))
(4)

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 4617

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011

6) A final estimate x̂(t) of the system state is then com-
puted as a sum of all P particle estimates weighted by
their respective normalized second stage weights

x̂(t) =
P∑
n=1

wnx̂nr (t) (5)

A. Verification of the BAPF

To demonstrate the improved decoding accuracy of the
BAPF over existing methods, a simulated experiment is pre-
sented. One dimensional animal position s(t) is predicted
on a 300 cm track while simultaneously compensating for
neural plasticity by observing simulated neuronal activity. The
BAPF predicts s(t) and the receptive field center µj(t) of K
hippocampal place cell neurons whose expected firing rates
are described by the following tuning function

λj(t) = exp

{
α− (µj(t)− s(t))2

2ξ2

}
(6)

The neural firing times are assumed to arrive according to
an inhomogeneous Poisson process at an average rate of λj(t)
for the jth neuron. The likelihood of particle n is therefore
defined as

pn(N(t)|x̂n(t)) =
K∏
j=1

(λj∆(t))
∆Nj(t)

e−λj(t)∆(t) (7)

where ∆Nj(t) is either 1 or 0 (neuron j fires or it does not fire)
over a sampling period ∆t = 1 ms for j = 1 . . . K observed
neurons. Figure 1(a) compares the mean square error (MSE)
between the true position and predicted position obtained from
the Weiner filter, the SIR particle filter and the BAPF as a
function of the number of neurons. In figure 1(b), 50 neurons
were decoded as and the average mse is given as a function of
the number of particles. This demonstrates the improvement
in the BAPF decoding accuracy as more particles are included
in the decoding process.

Figure 1 suggests that a high number of observed neurons
decoded with a large number of particles will yield the best
decoding accuracy by the BAPF. If these values are too
large, the number of computations to be executed for a single
iteration of the BAPF can not be performed in real-time
using a sequential processor. This indicates that an alternative
implementation of the BAPF is needed for BMIs.

III. HARDWARE IMPLEMENTATION

If real-time execution of the BAPF is desired, then a
parallel dedicated hardware implementation may be required.
Implementing digital signal processing (DSP) algorithms in
dedicated hardware eliminates the need to sequentially fetch
and decode instructions. Additionally, a hardware architecture
can exploit the computational independence between particles
to perform multiple parallel operations simultaneously.

FPGAs provide an ideal platform for DSP implementation,
combining the reprogrammability, architectural flexibility and
system-level integration of general purpose processors with

the performance offered by customizable hardware. Even with
current clock speeds well below conventional processors, re-
configurable logic can yield substantially superior throughputs
when made massively parallel [6].

FPGAs are customizable logic devices that are comprised
of configurable logic blocks (CLBs), programmable inter-
connections and input/output (I/O) cells. Each CLB may
include: look-up tables (LUTs), multiplexers, flip-flops, basic
logic elements (AND, XOR), block random access memory
(BRAM) and shift registers. In addition to the CLBs, current
devices incorporate dedicated fixed point multipliers for effi-
cient implementation of arithmetic functions.

An FPGA uses a general routing matrix (GRM) to configure
the interconnects between each of its CLBs. The GRM is an
array of static memory cells which store values that control
the configurable logic elements and interconnects between the
CLBs. These configuration values can be reloaded when the
functionality of the device needs to be altered.

Described next is a parallel FPGA hardware architecture
for utilizing the BAPF in real-time neural signal processing.
The design is a multi-rate system which is both modular and
scalable. The modularity allows new BAPF architectures to
be easily reprogrammed into the device to support a variety
of functions. The scalability allows the number of observed
neurons and the number of particles to be set according to the
desired application.

A. BAPF Top-Level Diagram

Figure 2 shows the top-level FPGA configuration for the
BAPF. There are four major components: 1) the controller, 2)
the random number generator (RNG), 3) the particle proces-
sors and 4) the resampler. Each of these components can be
easily replaced with another module to accommodate a new
neural signal processor.

10 20 30 40 50 60 70 80 90 100
10

0

10
5

number of neurons
(a)

M
S

E

BAPF
SIR
WF

10 20 30 40 50 60 70 80 90 100
10

2

10
3

number of particles
(b)

M
S

E

Fig. 1. Top- Comparison of MSE between the Weiner filter, SIR and BAPF.
Bottom- Estimation accuracy improves as the number of particles increases.

4618

The controller is modeled as a finite state machine (FSM).
The FSM provides select lines (sel) to multiplexers that
determine signal routing through the datapath. The FSM also
regulates the status of enable (en) and reset (rst) signals of
data registers. The RNG is a stand-alone dedicated module. It
operates independent of all other units in the system. The RNG
produces random variates according to the specific evolution
of x̂(t).

Each of the P particles used to estimate s(t) are configured
in parallel. The scalable design allows many particle proces-
sors to be replicated easily in hardware. They share the same
control logic, which permits all particle processors to perform
the same computations simultaneously.

B. Particle Processors

An expanded view of one particle processor from Figure
2 is shown in Figure 3. The state vector estimate block
contains logic that stores an estimate of every element in x̂n(t).
The number of neurons in the observed ensemble and the
number of parameters being estimated per neuron determines
the length of the state vector M . As M changes with the filter
application, so does the FPGA hardware that supports the state
vector.

Likewise, the conditional probabilities that define the like-
lihood equations will also vary with the BAPF application.
For example, the simulated hippocampal place cell firings
described in Section II are defined to arrive according to an
inhomogeneous Poisson process with an expected arrival rate
of λ(t) defined by Equation 6. However, if a different tuning
model is required for a different class of neurons, the compute
likelihood submodule can be replaced with one to compute
λ(t) specific to their firing behavior.

Particle
Processor1

RNG

Particle
Processor2

Particle
ProcessorP

Controller

Resampler

w1(t)

w2(t)

wP(t)

RNG1

RNG2

x(t)

Datapath

control logic

Fig. 2. Modular top-level diagram of the BAPF.

x

state vector
estimate

compute
likelihood

x1(t)

x2(t)

xM(t)

xM-1(t)

p(N|x(t))
update
weights

RNG1 RNG2

x1(t) resampled
x1 initial

x2(t) resampled
x2 initial

xM-1(t) resampled
xM-1 initial

xM(t) resampled
xM initial

Particle Processor

wr(t)

sr(t)
wr(t),sr(t)

wr(t),gr(t)

control logic

Fig. 3. Top-level diagram of a particle processor.

1) Parallel State Vector Update: Steps 1 and 4 of Section
II require each particle to update its x̂n(t) by adding a random
sample to each element of the state estimate. These random
samples are stored along a tapped delay line which allows
x̂n(t) to be formed as the sum of delayed samples and the
previous estimate through a feedback loop. The RNG module
of Figure 2 runs at a rate much higher than the rest of the
datapath so all random variables are available for processing
before executing Steps 1 and 4.

Figure 4 is an expanded view of the state vector module of
Figure 3. Updating each element of x̂n(t) occurs simultane-
ously in all P particles of the BAPF. Steps 1 and 4 require a
single clock each to execute.

z-1

to next particle

z-1

to next particle

s(t)
0
1
2

0
1
2

sel en

sel en

resampled state

initial state

resampled state

initial state

z-1
0
1
2

sel en

resampled state

initial state

+

+

+

mu1(t)

muK(t)

Fig. 4. Parallel registers provide simultaneous updates of all elements in
x̂n(t).

4619

2) Computing the Likelihood: The likelihood function of
Equation 7 for the nth particle is defined as the product of
all neuronal likelihoods estimated by the nth particle. This
first involves the computation of two exponential functions
for each neuron in parallel. Then, multiplying all of the indi-
vidual neuronal likelihoods. A fast hardware approximation
of ex is employed to compute the exponential in only 10
clock cycles. Using parallel multipliers, the final product of
neuronal likelihoods is computed in dlog2(K)e clock cycles.
Normalization is executed in dlog2(P)e clock cycles through
parallel additions.

3) Random Sampling and Final Weighted Estimate: The
resampler of Figure 2 uses the cumulative sum of the nor-
malized first stage weights as the bin edges of a histogram.
A uniform random sample on the interval (0, 1) is generated
for each particle. The uniform samples of all particle are then
sorted into their appropriate bin, which determines the particle
number it replicates into its state vector. The parallel hardware
design of the resampling process of Step 3 requires P+2 clock
cycles to resample all P particles.

During Step 6 each particle multiplies its current estimate
of ŝn(t) by its normalized second stage weight ŵn(t). These
products are summed using parallel additions. Computing the
weighted estimate requires dlog2(P)e+ 2 clock cycles.

IV. RESULTS

To demonstrate the increase in throughput facilitated by
the FPGA architecture of the BAPF, execution times required
to obtain an estimate from a single iteration of the BAPF
algorithm in hardware and software are compared. Table I
summarizes the number of clock cycles required to execute
a single iteration of the BAPF for predicting animal position.
In this experiment, ∆t = 1 ms, K = 75 and P is varied
from 50 to 5000. The FPGA hardware clock is 500 MHz. It is
compared to the execution time required by a sequential Intel
Core2 Duo Pentium processor with a 2.5 GHz clock in Figure
5. The hardware processing times were determined by Table
I. The software throughput was determined by computing the
average of 20 trials of each configuration.

TABLE I
THROUGHPUT LATENCY DEFINED BY THE NUMBER OF CLOCK CYCLES

REQUIRED TO EXECUTE A SINGLE ITERATION OF THE BAPF

Number of Clock Cycles

Step 1 1

Step 2 dlog2(K)e+ dlog2(P)e+ 20

Step 3 P + 2

Step 4 1

Step 5 dlog2(K)e+ dlog2(P)e+ 21

Step 6 dlog2(P)e+ 2

Total P + 2 dlog2(K)e+ 3 dlog2(P)e+ 47

Given the sampling period ∆t = 1 ms, it is imperative that
the computation time required to execute an iteration of the
BAPF be less than ∆t. If an iteration can not be computed

within this duration, then real-time implementation can not
be employed. Figure 5 shows that as the number of particles
approaches approximately 200 the software computation time
exceeds ∆t. However, the hardware computation time remains
well below ∆t even as the number of particles is increased to
5000.

50 400 800 1200 1800 2500 3200 4000 5000
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

number of particles

se
co

nd
s

pe
r i

te
ra

tio
n

hardware
software

Fig. 5. Throughput comparison between hardware and software implemen-
tations of the BAPF as a function of the number of particles.

V. CONCLUSION

The parallel hardware implementation presented greatly
reduces execution time of the BAPF. The modular architecture
provides a means for rapid prototyping of BAPFs for a variety
of applications and observed neural ensembles. The scalable
design allows the size of the neural ensemble to be changed
as wells as the number of particles in the filter. The parallel
FPGA architecture presented provides sufficient computational
throughput for utilizing the BAPF in a real-time BMI.

REFERENCES

[1] J. Sanchez and J. Pricipe, Brain-Machine Interface Engineering. Prince-
ton, New Jersey: Morgan and Claypool, 2007.

[2] B. Ristic, S. Arulampalam, and Neil, Beyond the Kalman Filter: Particle
Filters for Tracking Applications. Norwood, Massachusetts: Artech
House, 2004.

[3] J. Candy, Bayesian Signal Processing: Classical, Modern and Particle
Filtering Methods. Hoboken, New Jersey: Wiley and Sons, 2009.

[4] J. Liu and M. West, “Combined parameter and state estimation in
simulation-based filtering,” in Sequential Monte Carlo Methods in Prac-
tice. New York (A. Doucet, J. Freitas, and N. Gordon, eds.), Springer-
Verlag, New York, 2000.

[5] N. Gordon, D. Salmond, and A. Smith, “Novel approach to nonlinear/non-
gaussian bayesian state estimation,” Radar and Signal Processing, IEE
Proceedings F, vol. 140, pp. 107–113, Apr 1993.

[6] R. Esposito, J. Mountney, L. Bai, and D. S. , “Parallel architecture
implementation of a reliable (k,n) image sharing scheme,” in Parallel
and Distributed Systems, 2008. ICPADS ’08. 14th IEEE International
Conference on, pp. 27–34, Dec. 2008.

4620

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

