
An Information-Theoretic Approach to Motor Action Decoding with a
Reconfigurable Parallel Architecture

Stefan Craciun, Student Member, IEEE, Austin J. Brockmeier, Student Member, IEEE,
Alan D. George, Senior Member, IEEE, Herman Lam, Member, IEEE, and José C. Prı́ncipe, Fellow, IEEE

Abstract— Methods for decoding movements from neural
spike counts using adaptive filters often rely on minimizing the
mean-squared error. However, for non-Gaussian distribution
of errors, this approach is not optimal for performance.
Therefore, rather than using probabilistic modeling, we propose
an alternate non-parametric approach. In order to extract more
structure from the input signal (neuronal spike counts) we
propose using minimum error entropy (MEE), an information-
theoretic approach that minimizes the error entropy as part
of an iterative cost function. However, the disadvantage of
using MEE as the cost function for adaptive filters is the
increase in computational complexity. In this paper we present
a comparison between the decoding performance of the analytic
Wiener filter and a linear filter trained with MEE, which
is then mapped to a parallel architecture in reconfigurable
hardware tailored to the computational needs of the MEE
filter. We observe considerable speedup from the hardware
design. The adaptation of filter weights for the multiple-input,
multiple-output linear filters, necessary in motor decoding,
is a highly parallelizable algorithm. It can be decomposed
into many independent computational blocks with a parallel
architecture readily mapped to a field-programmable gate array
(FPGA) and scales to large numbers of neurons. By pipelining
and parallelizing independent computations in the algorithm,
the proposed parallel architecture has sublinear increases in
execution time with respect to both window size and filter order.

I. INTRODUCTION

In the area of brain-machine interfaces, adaptive filters
(AFs) are well suited for neural decoding. Generally, because
the statistics of the input signal are unknown (as is often
the case), we can use AFs to estimate these required signal
statistics through an iterative adaptation process. AFs adjust
their internal parameters or weights dynamically to match
the changes in the input, usually in a robust way in order
to meet a specific performance criterion. This performance
criterion, also known as the cost function, will set the rules
of adaptation at each iteration. In this paper we compare the
performance of two cost functions: the Wiener filter that aims
at minimizing the mean squared error (MSE) and an AF that
adapts its weights by minimizing the entropy of the error

This work was supported in part by the I/UCRC Program of the National
Science Foundation under Grant No. EEC-0642422 and DARPA Contract
N66001-10-C-2008.

S. Craciun∗†, A. J. Brockmeier∗, A. D. George†, H. Lam†,
and J. C. Prı́ncipe∗ are with the Department of Elec-
trical and Computer Engineering, University of Florida,
Gainesville, FL 32611 USA. (email: craciuns@ufl.edu,
ajbrockmeier@cnel.ufl.edu, george@chrec.org,
hlam@chrec.org, principe@cnel.ufl.edu)
∗Computational Neuro-Engineering Laboratory (CNEL)
†NSF Center for High-Performance Reconfigurable Computing (CHREC)

(MEE). The gain in performance of the MEE cost function
comes at the cost of increased computational complexity.

The tradeoff between performance and complexity is an
important factor that has impeded MEE-based algorithms
from being implemented in real-time. We address this prob-
lem by designing a parallel architecture for a reconfigurable
hardware solution. We show that the learning time for
decoding motor action can be greatly reduced, allowing us to
take advantage of the superior performance of the MEE cost
function without incurring the time penalties encountered
in software. By parallelizing the algorithm, we can more
efficiently search the solution space for the global minima,
and adapt all the weights of our system in parallel. With each
iteration, the weights move in the direction of the estimated
gradient in small increments, reaching a stable solution in
a finite number of steps. Our experiments prove that no
precision is lost, as both hardware and software adapt in
the same number of iterations.

The least mean squares (LMS) filter, a stochastic gra-
dient descent AF, and the Wiener filter, which is a one
step analytical solution, base their cost function criterion
on minimizing the mean squared error (MSE) [1]. Both
methods are computationally efficient, but MSE-based cost
functions are only an optimum solution when applied to
Gaussian signals with linear filters [1]. The central limit
theorem states that a summation of sufficiently large numbers
of random variables is Gaussian, but if the input consists
of a small number of counts, as in the case of binned
neural action potentials, the distribution of the errors is not
Gaussian. Thus, we propose using a cost function inspired by
Information Theory and based on Rényi’s quadratic entropy
measure [2]. This cost function is optimal for nonlinear
signal processing and will achieve better performance when
compared to the Wiener solution, as we will show in the
Methods and Results section of this paper. However, the
estimation of the error density requires a kernel evaluation
between all sample pairs, resulting in a substantial increase
in computational complexity. Consequently, the MEE cost
function has not been suited to real-time implementation.
Reconfigurable computing (RC) can provide an efficient
solution to this computational problem by mapping the
algorithm onto hardware, taking advantage of its unique
dataflow and inherent data dependencies. Furthermore, by
creating a custom parallel architecture fine-tuned to the
computational needs of the MEE cost function, we can
exploit the parallelism inherent in this algorithm with a
hardware design that achieves considerable speedup.

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 4621

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011

II. METHODS AND RESULTS

A. Adaptive Filter

The structure of adaptive filters can be divided into two
fundamental blocks as shown in Fig. 1. The first is the
adaptive FIR, which contains the input delay line along
with the filter weights. The second block contains the cost
function and the learning algorithm. The new weights are
computed based upon the current and past input and error
values. A batch of input samples will generate a sequence
of errors, which are stored in a delay line. The number of
past errors used to update the weights within every iteration
is defined as the window size.

Fig. 1. General-adaptive filter structure

The output of a general finite-impulse response (FIR) filter
is defined as the dot product of input x̄ and the L weights
w̄(n). For neural decoding we consider the case of M inputs
denoted {x̄k}Mk=1 with weights {w̄k}Mk=1.

y(n) =

M∑
k=1

L∑
i=1

xk(n−i+ 1) · wki (n). (1)

The error at time instant n is e(n) and is simply the
difference between the filter output and the desired value
e(n) = d(n) − y(n). The MEE cost function provides an
update equation for every weight of the FIR based on the
current value of the weights w̄(n) , a step size µ, and the
gradient of the information potential ∇V .

w̄(n+1) = w̄(n)+µ∇V (2)

The information potential (IP) is defined [2] as the argu-
ment of the logarithm in Rényi’s quadratic entropy of the
distribution of errors. Let the probability density of errors be
p(e) then the quadratic entropy of an error distribution E is
H2(E) = − log

∫
p2(e)de, and a nonparametric estimator

of the information potential (IP) [2] using the Gaussian
kernel κσ(.) over the last N errors (using subscripts for
compactness) is

V =
1

n2

n∑
i=n−N+1

n∑
j=n−N+1

κσ(ei−ej) (3)

where κσ(ei− ej) =
(√

2πσ
)−1

exp
(
(ei− ej)2/(2σ2)

)
is

the kernel function for density estimation. By taking the
derivative of the IP with respect to weight wkl , we can

compute the gradient at step n

∇V kl ∝
n∑

i=n−N+1

n∑
j=n−N+1

κσ(ei−ej)
(
ei−ej

)(
xki−l+1 − xkj−l+1

)
(4)

where a constant multiplicative factor is absorbed in µ in
(2).

The three most important parameters influencing the com-
putational complexity of the overall filter adaptation are the
FIR order and the window size used to estimate IP. The
computational complexity of the algorithm is O

(
n2
)

with
respect to window size N but only linear O

(
n
)

with respect
to filter order and number of inputs L · M . By varying
the size of the filter order delay line, we will influence
the performance of the prediction. A large window size
N is needed to correctly estimate the IP gradient (4), but
the O

(
n2
)

complexity weighs heavily on the sequential
execution time of the algorithm.

B. Motor Decoding from Neural Subsets

We use linear models to learn motor action decoding from
the firing rates of small subsets of neurons (8 neurons). The
motivation is to identify subsets of neurons whose activity
provides good predictors of the movement, as neurons widely
vary in their prediction performance for different dimensions
of the movement. Thus, we choose random subsets of
neurons and train linear models for decoding movement from
each subset. The neurons that appear in multiple subsets, or
the best performing subsets, could be selected for use in a
larger more complicated model. This process is in essence a
brute force feature selector, normally infeasible in standard
hardware, but can be optimized in reconfigurable computing.

We propose using MEE for the adaptive filter methodology
because for binned spike data, the distribution of values is
far from Gaussian, thus a small combination of these values
will also be non-Gaussian (see Fig. 2 for the distribution of
errors from a Wiener solution with 8 neurons).

−40 −30 −20 −10 0 10 20 30 40
0

0.02

0.04
Distribution of Errors x−position

p
(e

rr
o
r)

 Empirical Density

N(0.67,14.31)

−40 −30 −20 −10 0 10 20 30 40
0

0.02

0.04
Distribution of Errors y−position

p
(e

rr
o
r)

 Empirical Density

N(1.361,17.98)

−40 −30 −20 −10 0 10 20 30 40
0

0.05

0.1
Distribution of Errors z−position

error

p
(e

rr
o
r)

 Empirical Density

N(3.49,12.90)

Fig. 2. Error distributions for Wiener solution compared to Gaussians.

MEE is contrasted to the Wiener filter that assumes uses
only second-order information about the error. The higher-
order information that MEE can extract is useful when the
error distribution is far from Gaussian.

4622

C. Dataset Description and Results

The neural data we use was collected in Dr. Nicolelis’s
primate laboratory at Duke University. Specifics can be
found in [3]. The data is recorded from an owl monkey’s
cortex while the animal was performing a food-reaching
task with a single arm. Multiple micro-wire arrays record
from 104 neural cells in multiple cortical areas: posterior
parietal cortex; left and right primary motor cortex; and
dorsal premotor cortex. Synchronous recordings provide the
reaching hand’s position in three dimensions. The spikes are
binned at 100 ms and the three-dimensions (x, y, and z)
of hand position are also at 10 Hz. In this dataset, there are
over 38 minutes of data during which the animal would reach
and eat food sitting on two different trays, while in-between
reaches, the animal returns its hand to a resting location. In
our experiments we used 200 seconds of training data and
35 minutes of testing data.

The results use 160 random subsets of 8 neurons that were
selected and tested with the condition that all neurons have at
least a 1Hz firing rate. Both models used 3 taps (300ms) for
each neuron as input, and a decoder for each dimension of
hand position is trained independently. The Wiener solution
was regularized by adding a scaled identity vector to the
autocorrelation matrix w̄ = (R+10−4I)−1P̄ , where R is the
auto-correlation matrix and P̄ is the cross-correlation vector
[1]. For the MEE filter we used a kernel size of σ = 49.5 (the
largest 10-90 percentile range) , a window length N = 75
errors (chosen to cover the time between movements), and a
step size µ = 0.05 (for stability). The performance is gauged
in terms of cross-correlation between the true movement and
the predicted,

CC(x, y) =
E[xy]√

E[x2]E[y2]
. (5)

Fig. 3 compares the true movement to the Wiener and MEE
prediction using a single random subset of 8 neurons over a 1
minute window. Fig. 4 compares the cross-correlation for the
Wiener and the MEE solution across all subsets and output
dimensions. For subsets with poor performance there is no
difference in the MEE versus Wiener performance; however,
for the best performing subsets the MEE solution does better
in nearly all of the subsets. It should be noted that neither
filter does well in predicting the x direction (CC < .5) in
this particular dataset as noted for a wide range of filters in
Kim et al. [4].

III. PARALLEL ARCHITECTURE

In this section we describe how the decoding algorithm’s
MEE cost function is mapped to a parallel architecture in
reconfigurable hardware. Fig. 5 shows the overall architec-
ture of the adaptive filter, which consists of M FIR filters,
the error pairwise distance block, the Gaussian kernel block,
M input pairwise distance blocks, and parallel pipelined
accumulators. The input from each of the M neurons enters a
FIR of length L such that, at every clock cycle a new sample
enters the delay line and the oldest sample is forgotten.
In addition, the last N input values for each neuron and

1700 1710 1720 1730 1740 1750

−20

0

20

40

Time (s)

x
−

p
o
s
it
io

n
 (

m
m

) Wiener: [All: CC=0.093, Moving: CC=0.1], MEE: [All: CC=0.064, Moving: CC=0.03]

1700 1710 1720 1730 1740 1750
−50

0

50

Time (s)

y
−

p
o
s
it
io

n
 (

m
m

) Wiener: [All: CC=0.44, Moving: CC=0.56], MEE: [All: CC=0.51, Moving: CC=0.58]

1700 1710 1720 1730 1740 1750

−20

0

20

40

Time (s)

z
−

p
o
s
it
io

n
 (

m
m

) Wiener: [All: CC=0.35, Moving: CC=0.49], MEE: [All: CC=0.34, Moving: CC=0.47]

Rest State

True

MEE

Wiener

Rest State

True

MEE

Wiener

Rest State

True

MEE

Wiener

Fig. 3. Snapshot of 3 reaches with a comparison of the true movement,
Wiener prediction, and MEE prediction.

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

C
ro

s
s
−

c
o
rr

e
la

ti
o
n
 f
o
r

M
E

E
 S

o
lu

ti
o
n

Cross−correlation for Wiener Solution

Cross−correlation to hand position during movement for 160 subsets of 8 neurons

x

y

z

Fig. 4. Cross-correlation to hand position for 160 subsets of 8 neurons.

the N errors are stored to estimate the IP gradient (4) and
thus the new weights. The parallel architecture and hardware
design balances precision and resource utilization. The FIRs
are constructed from 32-bit fixed-point registers, adders, and
multipliers. For this design, the pipeline can process a new
sample from each of the M neurons every clock cycle
without stalling.

Computing all pairwise distances (4) takes a considerable
amount of time in software because each error requires
N − 1 pairwise error distance evaluations. In a pipelined
and parallel design, all these independent computations can
be parallelized. Fig. 6(A) shows the pipelined design of
the pairwise error distance block, which allows for the
computation of pairwise distances between the current error
and all past errors in just one clock cycle. Similarly, each
input pairwise distance employs the same pipelined design.
By computing pairwise distances in parallel, this architecture
only utilizes 1 clock cycle to compute N−1 subtractions for
errors and M · (N−1) subtractions for inputs.

The second term in (4) is the Gaussian kernel evaluation

4623

Fig. 5. (Left) MEE cost-function subcomponents. (Right) Dataflow.

(A)

(B)

(C)

Fig. 6. (A) Pipelined pairwise distance computation. (B) Gaussian kernel
block. (C) Pipelined accumulator.

κσ(ei− ej). As the argument of the exponential function
has a wide dynamic range, we concluded that pre-computed
lookup tables estimating the exponential function would
require considerable FPGA resources, thus preventing us
from fully exploiting the wide parallelism of the algorithm.
We used the first 6 terms of the Taylor series to compute the
exponential function as needed in the Gaussian kernel, as
shown in Fig. 6(B). As soon as the error pairwise distances
become available from the pairwise distance block, their
Gaussians can be computed in parallel with the latency of
one kernel computation. In software all Gaussian kernels are
computed sequentially. Finally, as suggested by the double
summations in (4), the product between the error distances,
Gaussian kernels, and input distances needs to be summed.
Fig. 6(C) shows the three-step accumulator required to sum
all pairwise interaction. In total, there are N accumulators
to parallelize the double summation in (4).

We tested the performance of our parallel architecture

at the NSF Center for High-Performance Reconfigurable
Computing (CHREC) at the University of Florida [5]. Our
design for an information-theoretic adaptive filter was tested
on an Altera Stratix-III E260 FPGA featuring 256K logic
elements with 4.25GB of dedicated memory in three parallel
banks and operating at 150 MHz. The software baseline used
for comparison is written in C with optimization O2 and
executed on a 2.4 GHz processor with 8GB of RAM. For
less than 20 neurons the entire design fits on one FPGA. A
weight update for 8 neurons with a window of 1000 samples
takes 40 µs in software compared to 6 ms in hardware, but
the hardware achieves sublinear increases in execution time
for increasing window sizes and number of neurons as shown
in Table I.

TABLE I
EXECUTION TIME SCALING, RELATIVE TO N = 100,M = 8 FOR

HARDWARE(SOFTWARE)

N M # of neurons
window size 8 20 40

100 1(1) 2.1(2.1) 3.7(4.1)
10000 1.2(73) 1.7(195) 3.8(390)

IV. CONCLUSION

This paper proposes an information-theoretic approach
to identify subsets of neurons that can be used to decode
motor intent. We compare an error-entropy minimization
cost function to the conventional mean-squared-error cost
function in the classic Wiener filter. When using lower
numbers of binned spike counts from neurons to decode
motor intent, the training errors are non-Gaussian, suggesting
that a typical MSE approach is not optimal. In contrast, an
MEE type of cost function is able to extract higher-order
statistics, as opposed to only the power of the error, and
can optimally adapt to non-Gaussian errors. The penalty we
pay for this cost function is higher computational complexity
that translates to a substantial increase in training time.
The solution to this problem is a pipelined and parallel
hardware architecture that can exploit algorithm parallelism
(both wide and deep), essentially decreasing training time,
and converging to the optimal weights much faster. Execution
time experiments demonstrate the ability of the hardware to
efficiently scale to larger window sizes. This allows MEE-
based algorithms to be used in real-time applications.

REFERENCES

[1] S. Haykin, Adaptive Filter Theory. Prentice Hall, 2002.
[2] D. Erdogmus and J. Principe, “Generalized information potential crite-

rion for adaptive system training,” Neural Networks, IEEE Transactions
on, vol. 13, no. 5, pp. 1035–1044, 2002.

[3] J. Wessberg, C. Stambaugh, J. Kralik, P. Beck, M. Laubach, J. Chapin,
J. Kim, S. Biggs, M. Srinivasan, and M. Nicolelis, “Real-time prediction
of hand trajectory by ensembles of cortical neurons in primates,” Nature,
vol. 408, no. 6810, pp. 361–365, 2000.

[4] S. Kim, J. Sanchez, Y. Rao, D. Erdogmus, J. Carmena, M. Lebedev,
M. Nicolelis, and J. Principe, “A comparison of optimal MIMO linear
and nonlinear models for brain–machine interfaces,” Journal of Neural
Engineering, vol. 3, p. 145, 2006.

[5] “Novo-G Overview.” [Online]. Available: http://www.chrec.org/
∼george/Novo-G.pdf

4624

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

