
Using General-Purpose Graphic Processing Units for BCI Systems

J. Adam Wilson

Abstract— BioMEMS electrode array fabrication techniques

are used to develop high-density arrays with hundreds of

channels. However, it was previously impossible to process

more than a fraction of these channels real-time for online

BCI experiments due to computational resource restraints. It

is now possible to use graphics processing units (GPUs), which

can have several hundred processing cores each, to processes

large amounts of data quickly. This paper summarizes advances

in using GPUs for BCI processing for EEG, ECoG, and micro-

electrode systems, with speedups of more than 30 times that of

current state-of-the-art CPU-based BCI implementations.

I. INTRODUCTION

Advances in real-time Brain-Computer Interface (BCI)
research have been largely co-dependent with increases in
computer processor speeds; as the processor (CPU) speed
increases, so does the complexity of the extraction and
translation algorithms that drive the BCI system. For most of
the history of the personal computer, processor clock rates
have obeyed Moore’s Law, doubling every 18-24 months
with increasing transistor density. However, within the last 10
years, processor speeds have plateaued; software developers
can no longer count on faster CPUs to develop complex
signal processing routines, or to process more data. The
current trend is a move towards parallel processing, in
which CPUs with multiple processing cores allow numerous
calculations to be done simultaneously.

Currently, electrode fabrication methods utilizing biologi-
cal microelectromechanical systems (BioMEMS) techniques,
similar to those used for CPU and integrated circuit design,
can produce electrode systems with channel counts that can
exceed the processing capabilities currently available in most
computers. Implantable systems for recording individual
neurons, such as the Michigan array, Utah probe, high-
density encephalogram (EEG), and a number of systems for
recording cortical field potentials (micro-electrocorticogram,
or µECoG [1], [2]) are capable of recording from up to 256
or more channels. This presents a challenge for BCI system
designers, because the primary methods for working with
such large amounts of data have remained largely unchanged
in the last decade: the researcher records a baseline of brain
signals, and manually selects a handful of channels with
task-related brain activity, often discarding other data in
the process. This methodology typically does not account
for any complex interactions between multiple channels,
because the required algorithms for a real-time BCI would be
too computationally intensive for modern CPUs, and many

This work was supported by the NVIDIA Professor Partnership Grant
J. Wilson is with the Department of Neurosurgery, University of Cincin-

nati, Cincinnati, OH 45219, USA adam.wilson@uc.edu

BCI research labs do not have the expertise to develop
highly customized hardware architectures using digital signal
processing (DSP) chips or field programmable gate arrays
(FPGAs)[3]. Furthermore, these hardware platforms do not
easily allow rapid prototyping of new algorithms or analysis
routines.

However, it has recently become possible to take ad-
vantage of the general-purpose processing capabilities of
the graphics processing unit (GPU) present on many PCs.
GPUs are designed for massively parallel computation, and
are equipped with dozens to hundreds of processing cores
and several gigabytes (GB) of RAM. Several programming
interfaces, including NVIDIA’s CUDA[4] and the open-
source OpenCL[5], are now available for scientific comput-
ing applications that allow data to be processed using the
GPU, with performance increases up to 100 times that of a
standard CPU. While optimized for matrix operations, these
GPU interfaces allow any generic C/C++ code to be written
and run on the GPU, with much of the low-level architectural
detail abstracted from the programmer. This highly-modular,
highly-extensible, and highly-portable approach to massively
parallel programming not only allows far greater numbers of
neural channels to be processed real-time, it will allow the
next generation of real-time algorithms to be developed that
takes advantage of the inherently parallel nature of neural
processing.

This paper introduces several important GPU concepts
using the NVIDIA CUDA framework, provides information
about GPU-based algorithms that have been developed for
spike processing, and demonstrates the tremendous increases
in speed possible. Additionally, previous results from [6]
for EEG/ECoG processing will be summarized. It concludes
with the implications of GPU computing for the BCI field,
and several related applications.

A. Introduction to GPU Computing
Programs written using the CUDA interface involves run-

ning code on two platforms concurrently: the host system
with one or more CPUs, and one or more devices, which are
CUDA-enabled NVIDIA GPUs. These GPUs are designed
to run thousands of lightweight threads, which perform
simple computations in parallel. This differs significantly
from CPU-based programming, in which one or very few
threads perform computationally intensive tasks sequentially,
relying on speed to finish the tasks rather than parallelism.

Any program using the CUDA interface will follow the
same basic paradigm, in which the host reads and configures
the data to be analyzed, initializes the GPU device, copies
the data to the device for analysis, before finally running the

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 4625

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011

device kernel, which is the set of instructions that process
the data on the device. When the computations are complete,
the results are typically transferred back to the host, or
left on the GPU for further processing. The data transfer
overhead is a very important consideration when writing a
CUDA program, because while the kernel itself may provide
a significant speed-up, this may be negated by long data
transfer times to and from the GPU. This is particularly
important for BCIs, which usually require processing times
on the scale of <100 ms.

II. METHODS
A. Materials

The tests in this work were performed on three computers:
a custom-built desktop workstation, a 2009 Macbook Pro
(MBP) laptop, and an ASUS Netbook (Table I). These
systems represent a wide range of possible BCI hardware
implementations. The operating system (OS) for each com-
puter was Windows 7 Enterprise.

TABLE I
SYSTEMS TESTED

Workstation MBP Netbook

CPU Intel Core i7 960 Intel Core2 Duo Intel Atom
4 cores , 3.2 GHz 2 cores, 2.8 GHz 2 cores, 1.6 GHz

RAM 12 GB 8 GB 4 GB
GPU GeForce FX 470 GeForce 9600M GT NVIDIA ION

448 cores 32 cores 16 cores
1.2 GHz 120 MHz 450 MHz

GPU 4 GB 512 MB 512 MB
RAM

The tests described below were performed on each system,
and the processing time and processing time jitter were
compared for the CUDA implementation, single-threaded
(ST) CPU implementation, and multi-threaded (MT) CPU
implementation.

B. BCI Signal Processing: ECoG and ECoG Signals
Detailed methodology in this section has been previously

reported in [6], and is briefly discussed here. ECoG signals
are typically high-bandwidth (>500 Hz) compared to EEG,
and high-channel count (e.g., grids for epilepsy monitoring
typically have 64 contacts). Therefore, ECoG-based BCIs, as
well as high-density EEG and EEG analyses using complex
algorithms, benefit greatly from GPU computing solutions.
This section focuses on techniques for virtual movement
tasks, such as cursor movement or controlling a robotic
prosthesis.

Sensorimotor BCIs take advantage of the user’s ability to
voluntarily modulate brain activity while performing imag-
ined movements. Preceding and during imagined movements,
there is a suppression of 8-12 Hz (µ) and 18-28 Hz (β)
activity, while high-frequency activity (e.g., >70 Hz, or high-
γ) increases, which the BCI detects and translates into a
device command, such as moving a cursor or robotic arm.

A typical processing chain for a movement task is: 1)
spatially filter the signals using a common average reference
(CAR) or Laplacian filter; 2) calculate the power spectra in

specific frequency bins; 3) classify the bins and translate the
power amplitudes into movement in 1, 2, or 3 dimensions; 4)
normalize the control signals, and adaptively update signal
weights based on previous results in training. Of these, the
spatial filter and power spectral calculations are the most
computationally intensive, and were therefore chosen for
GPU implementation. The algorithms were obtained from
the BCI2000 system [7]; these are natively written to utilize
only a single thread for computation, and so the code was
modified to run using both single and multiple threads.

C. BCI Signal Processing: Microelectrode Signals
BCIs that record signals using microelectrodes detect and

classify action potentials (spikes), on each channel, and
the firing rates of each neuron are used to determine the
desired movement direction. This approach is based on the
population vector theory from Georgopolos et. al. [8], which
states that the firing rate of a neuron in motor cortex is pro-
portional to the intended direction of movement, and follows
a cosine tuning curve with a peak at its preferred direction.
If sufficient neurons are used, it is possible to estimate the
movement direction by using the vector summation of the
firing rates and known preferred directions of all neurons, as
in [9].

1 1.02 1.04 1.06 1.08 1.1-300

0

300

Time (s)

uV

1 1.02 1.04 1.06 1.08 1.1-60
Time (s)

80

0uV

A) B)

C)

-4 -3 -2 -1 0 1 2 3-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Prin Comp 1

Pr
in

 C
om

p
2

D)

Fig. 1. Spikes are analyzed by A) high-pass filtering raw signals, B) using
a threshold-crossing to detect spikes, C) aligning the spikes on the peaks,
and D) classifying the spike waveform using principal component analysis
and k-means clustering.

Therefore, an example processing chain for spike detection
is: 1) high-pass filter the data at > 250 Hz to remove low-
frequency field potentials; 2) detect signals above or below
some threshold; 3) classify these spikes as neuronal or noise;
and 4) calculate the population vector.

1) High-Pass Filter: Signals were HP filtered using an
order 30 finite impulse response (FIR) filter with a corner
frequency of 250 Hz. The filter and signals were converted to
the frequency domain using the CUDA fast Fourier transform
(FFT) library (CUFFT), convolved using multiplication, and
converted back to the time domain for further processing.

2) Spike Detection: Each CUDA block processed a chan-
nel using 256 threads. Peaks above or below threshold were
detected by searching for values that were greater than the
closest neighboring values and past the threshold.

4626

3) Spike Classification: The first three principal com-
ponents of the spikes for each channel were previously
determined offline. The PCA scores were calculated on the
GPU by computing the dot product of each spike waveform
with every component, a straightforward GPU procedure
using reduction techniques. Spikes with similar waveforms
tend to cluster together (see Figure 1, panel 4). A K-means
clustering algorithm from [10] was implemented in CUDA
to classify new incoming spikes.

D. Spike Tests

Generated data with a sampling rate of 25 kHz was used,
and processed in blocks of 50 ms (1250 samples) Channel
counts ranging from 1 channel to 1024 channels, incremented
in powers of two, were used.

III. RESULTS

A. EEG/ECoG Processing

100 101 102 103 104
0

1000

2000

3000

4000

Channels

%
 S

pe
ed

up

M-Thread/CUDA
S-Thread/CUDA

10 0 101 102 103 104
10 -1

10 0

10 1

10 2

10 3

Channels

Pr
oc

es
sin

g
Ti

m
e

(m
s)

CUDA
M-Thread
S-Thread

A)

B)

50 ms

28 ms

Fig. 2. A) The EEG/ECoG processing times for CUDA, multi-threaded (M-
Thread), and single-threaded (S-Thread) execution. The gray bar at 50 ms
shows the maximum allowable processing time for an online BCI. B) The
speedup % for CUDA vs. multi-threaded and CUDA vs. single-threaded.

Results from [6] are updated here, using a newer video
card. In Figure 2A the GPU processed > 4000 channels of
2.4 kHz data in 50 ms blocks (including spatial filtering and
auto-regressive power estimation) in less than 28 ms. The
ST version took 50 ms to process 128 channels, and the MT
version processed 512 channels in 50 ms. Figure 2B shows
that the GPU provided a speedup of up to 3000% compared
to ST CPU processing, and nearly 800% compared to the MT
version running on the 8-core CPU. The relative performance
gains increased as the amount of data increased.

100 101 102 103
10-1

100

101

102

Channels

Pr
oc

es
si

ng
 T

im
e

(m
s)

CUDA
M-Thread
S-Thread

100 101 102 103
0

200

400

600

800

1000

1200

Channels

%
 S

pe
ed

up

M-Thread/CUDA
S-Thread/CUDA

A)

B)

50 ms

11 ms

Fig. 3. A) The spike processing times for CUDA, multi-threaded (M-
Thread), and single-threaded (S-Thread) execution. The gray bar at 50 ms
shows the maximum allowable processing time for an online BCI. B) The
speedup % for CUDA vs. multi-threaded and CUDA vs. single-threaded.

B. Spike Processing

Figure 3 show the processing times and % speedup for
the CUDA, MT, and ST algorithms, including the time
required to apply an order 31 high-pass filter using the
FFTW and CUFFT libraries, threshold-based spike detection,
spike classification, and population vector calculation. Once
more than 8 channels are processed, the GPU consistently
outperforms the CPU, and was more than 1000% faster than
the ST version for > 512 channels. The GPU is able to
process 1024 channels is less than 11 ms, compared to 51
ms for the 8-core CPU.

Another important consideration for a real-time BCI is
the timing consistency and jitter, or the standard deviation
(σ) of the processing speeds [11]. For both single and MT
algorithms, the jitter increased significantly with the number
of channels processed. The σ for 8, 128, and 1024 channels
respectively was 0.21 ms, 3.32 ms, and 26.70 ms for the ST
version, 0.08 ms, 1.31 ms, and 9.50 ms for the MT version,
and 0.09 ms, 0.18 ms, and 1.16 ms for the GPU. Therefore,
the GPU provides much better timing consistency compared
to both CPU versions, a critical factor for designing BCIs.

C. System Comparison

Figure 4 shows the overall spike processing times for the
Core-i7 8-core CPU, the GTX 480 GPU, the Macbook Pro
laptop with a 9800M GT GPU, and the ION GPU. The GTX
and 9800M GPUs outperform the CPU when more than 10
channels are processed, while the ION GPU outperforms the
CPU when more than 64 channels are processed.

4627

10
0

10
1

10
2

10
3

10
0

10
1

10
2

Channels

P
ro

c
e
s
s
in

g
 T

im
e
 (

m
s
)

Core-i7 CPU

ION

MBP (9800M)

GTX480

Fig. 4. A comparison of the processing times of the three GPU-based
systems and the 8-core CPU system.

IV. CONCLUSIONS

A. Future Work

GPU computing opens the possibility of a new realm of
real-time BCI and neurophysiology experimentation. While
it is unlikely that many labs will be using hundreds or
thousands of electrodes in the near future due to engineering
limitations, GPU computing allows researchers to utilize
additional processing steps after the initial calculations, e.g.,
calculating the cross-channel coherence or current-source
density in local field potentials (LFPs) or EEG/ECoG, and
additional waveform analysis and spike rate calculations
in spikes, to name a few possibilities (Figure 5). Further-
more, GPU computing provides multiple parallel processing
pathways in ways that were not computationally feasible
previously. This is because it is possible to ‘stack’ GPUs
in a single computer, using up to four for processing and
display.

Therefore, a real-time experiment recording 100s or 1000s
of wide-band neural channels containing both LFPs and
spikes could be split to multiple GPUs, e.g., using one for
spike processing, a second for field potential processing, and
a third for more complex algorithms that were previously
impossible to employ real-time, such as large artificial neural
networks (ANNs), independent component analysis (ICA),
and many others. These analyses would not need to be
performed on a distributed processing platform, e.g. using
a network connection, which requires synchronizing several
computers and can introduce network delays and jitter. Fur-
thermore, other monitoring modalities could be incorporated
as well, such as motion capture and analysis. Finally, GPU
technology continues to be further miniaturized, and is being
integrated into tablets and cell phones, which might be used
for portable BCI computing, e.g., for wheelchair control, in
the near future.

B. Conclusions

GPU computing provides an inexpensive, scalable, and
programmatically portable method for developing BCI and
electrophysiology processing systems that outperform cur-
rent state-of-the-art CPU systems. Frameworks such as

-ICA
-ANNs
-Complex
Algorithms
-Motion Capture

Spikes
-PCA
-Rate Cross-
Correlations

LFPs
-Coherence
-Current-Source
Density

Fig. 5. Neural signals can be split into parallel processing pathways
executed on multiple GPUs.

OpenCL and CUDA provide programmers with a relatively
simple interface to leverage the parallel computational power
of GPUs, provide superior real-time timing characteristics,
and can meet the processing requirements for 1000’s of
channels for the foreseeable future without the need to
develop custom FPGA hardware or DSP systems.

V. ACKNOWLEDGMENTS
The author gratefully acknowledge the contribution of the

NVIDIA Corp. Professor Partnership Grant.

REFERENCES

[1] J. Kim, J. A. Wilson, and J. C. Williams, “A cortical recording
platform utilizing microECoG electrode arrays.” Conf Proc IEEE Eng
Med Biol Soc, vol. 2007, pp. 5353–5357, 2007.

[2] B. Rubehn, C. Bosman, R. Oostenveld, P. Fries, and T. Stieglitz, “A
mems-based flexible multichannel ecog-electrode array,” J Neural Eng,
vol. 6, no. 3, p. 036003, Jun 2009.

[3] A. Malatesta, L. Quitadamo, M. Abbafati, L. Bianchi, M. Marciani,
and G. Cardarilli, “Moving towards a hardware implementation of
the independent component analysis for brain computer interfaces,”
in Biomedical Circuits and Systems Conference, 2007. BIOCAS 2007.
IEEE. IEEE, pp. 227–230.

[4] NVIDIA, NVIDIA CUDA Compute Unified Device Architecture Pro-
gramming Guide, v 4.0., 4th ed., NVIDIA Inc., 2011.

[5] Khronos Group Std. Rev 44. (2011, Jun) The
opencl specification, version 1.1. [Online]. Available:
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf

[6] J. A. Wilson and J. C. Williams, “Massively parallel signal process-
ing using the graphics processing unit for real-time brain-computer
interface feature extraction,” Frontiers in Neuroinformatics, 2009
(Submitted).

[7] G. Schalk, D. J. McFarland, T. Hinterberger, N. Birbaumer, and J. R.
Wolpaw, “BCI2000: a general-purpose brain-computer interface (BCI)
system,” IEEE transactions on bio-medical engineering, vol. 51, no. 6,
pp. 1034–43, Jun 2004.

[8] A. P. Georgopoulos, J. F. Kalaska, R. Caminiti, and J. T. Massey, “On
the relations between the direction of two-dimensional arm movements
and cell discharge in primate motor cortex.” J Neurosci, vol. 2, no. 11,
pp. 1527–1537, Nov 1982.

[9] D. M. Taylor, S. I. H. Tillery, and A. B. Schwartz, “Direct cortical
control of 3D neuroprosthetic devices,” Science, vol. 296, no. 5574,
pp. 1829–32, Jun 2002.

[10] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical recipes in C: the art of scientific computing. Cambridge
Univ. Press Cambridge, Dec 1999.

[11] J. A. Wilson, J. Mellinger, G. Schalk, and J. Williams, “A procedure for
measuring latencies in brain-computer interfaces,” IEEE Trans Biomed
Eng, vol. 57, no. 7, pp. 1785–97, Jul 2010.

4628

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

