
  

 

Abstract—Recording and stimulation via high-count 
penetrating microelectrode arrays implanted in peripheral 
nerves may help restore precise motor and sensory function 
after nervous system damage or disease. Although previous 
work has demonstrated safety and relatively successful 
stimulation for long-term implants of 100-electrode Utah 
Slanted Electrode Arrays (USEAs) in feline sciatic nerve [1], 
two major remaining challenges were 1) to maintain viable 
recordings of nerve action potentials long-term, and 2) to 
overcome contamination of unit recordings by myoelectric 
(EMG) activity in awake, moving animals. In conjunction with 
improvements to USEAs themselves, we have redesigned 
several aspects of our USEA containment and connector 
systems. Although further increases in unit yield and long-term 
stability remain desirable, here we report considerable 
progress toward meeting both of these goals: We have 
successfully recorded unit activity from USEAs implanted 
intrafascicularly in sciatic nerve for periods up to 4 months (the 
terminal experimental time point), and we have developed a 
containment system that effectively eliminates or substantially 
reduces EMG contamination of unit recordings in the moving 
animal. In addition, we used a 100-channel wireless recording 
integrated circuit attached to implanted USEAs to transmit 
broadband or spike-threshold data from nerve. Neural data 
thusly obtained during imposed limb movements were decoded 
blindly to drive a virtual prosthetic limb in real time. These 
results support the possibility of using USEAs in peripheral 
nerves to provide motor control and cutaneous or 
proprioceptive sensory feedback in individuals after limb loss 
or spinal cord injury. 

I. INTRODUCTION 

HE upper and lower limbs and digits exhibit high 
innervation densities, thereby allowing fine motor 

control and high-resolution, multi-modal sensory input. 
Consequently, to restore motor and sensory function 
effectively after limb loss or spinal cord injury, peripheral 
nerve interfaces will need to record from and stimulate a 
large number of different sites in a highly selective manner. 
For example, because residual nerves remain viable after 
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limb amputation, recordings obtained from motor fibers 
could provide natural, intuitive control signals for a highly 
dexterous prosthetic arm. Similarly, after spinal cord injury, 
recordings from sensory fibers could provide cutaneous and 
proprioceptive information that could be used to evoke 
percepts (e.g., via stimulation of somatosensory cortex) or to 
provide local feedback control of motor systems. These first-
order requirements strongly imply the need for multiple 
intrafascicular electrodes whose active tips closely abut 
small subsets of motor or sensory nerve fibers. 

A leading example of such a neural interface is the Utah 
Slanted Electrode Array (USEA) [1]. Among its advantages, 
the USEA provides ~100 independent sites of stimulation 
and recording; a high degree of selectivity; and ease of 
implantation [1-7]. The 100 microelectrodes are spaced 400 
μm apart on a 10 x 10 grid, with lengths from 0.5 to 1.5 mm. 
A single USEA thus provides almost complete coverage of 
both the width and depth of the cat sciatic nerve. The USEA 
provides highly selective stimulation and recording for 
multiple different motor and sensory fibers in cat hindlimb 
nerves [1-6], and, more recently, in monkey arm nerves [8]. 
A similar Utah Electrode Array (UEA) with equal-length 
electrodes has been used successfully for years in motor 
cortex of paralyzed humans [9], and has been implanted 
chronically in the median nerve of one individual without 
pain or loss of hand function [10]. 

The seminal work of Branner, Normann et al. [1] first 
examined chronic USEAs and containment systems (to 
protect and stabilize the array) in cat sciatic nerve. These 
important initial studies demonstrated that long-term USEA 
implants are relatively benign, and cause little or no 
behavioral locomotor deficits. The ability to evoke motor 
responses was also maintained. However, in general it was 
not possible to record single units long term, and recordings 
were contaminated by electromyographic (EMG) activity 
during movement. Additional challenges included large, 
rapid drops in electrode impedances, and failure of 
connectors and electrodes (perhaps due to broken lead 
wires), particularly in early implant systems. 

Here we report substantial progress toward addressing 
these remaining challenges, including in particular the 
ability to obtain long-term, EMG-free unit recordings from 
USEAs implanted in cat sciatic nerve. Further, to 
demonstrate their functional utility, we recorded neural 
signals via a 100-channel wireless integrated circuit [11], 
and used the wirelessly transmitted spike-threshold data to 
drive a virtual prosthetic limb in real time [12]. 
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II. METHODS 

A. USEA, Containment System, and Transcutaneous 
Connector 

1) USEAs: USEAs were manufactured as in previous 
work [1], with modifications including sputtered iridium 
oxide film (SIROF) electrode tips, Parylene-C electrode 
insulation, wirebonding, and lead-wire insulation. Four near-
corner long electrodes with large exposed tips and low 
impedances converged to common bus and served as an 
additional on-array electrical reference. 

2) Connectors: In the previous chronic USEA study [1], 
each array was wired to 36 pins of two 40-conductor 
connectors mounted on the animal’s back. Here the USEA 
was wired to a custom-designed printed circuit board (PCB) 
attached to a single Tucker-Davis Technologies 96-pin ZIF-
Clip connector. The PCB and a protective titanium shell 
were mounted outside the animal atop a surface-treated 
medical-grade titanium transcutaneous post, shaped as a 
rounded 5 mm by 20.5 mm rectangle. The post attached to a 
bone plate screwed to the femur. The height from the bone 
to the bottom of the flange holding the PCB and shell was 
approximately 18 mm, which was sufficient to traverse 
intervening muscle and to clear the outer surface of the skin. 

3) Containment system. The array containment system for 
chronic preparations consisted in part of a 19 mm x 13 mm 
gold-wire screen (#52 gold mesh, Alfa Aesar, Ward Hill, 
MA) whose edges had been coated with Parylene-C to 
prevent unraveling of the screen and to minimize snagging 
on tissue. The screen was attached via a lead wire to the 
connector shell, which served as electrical ground. 

B. Surgery 

Four purpose-bred adult cats with chronic USEA implants 
were used. One additional acute preparation was used for the 
wireless recording and neural decode experiment. 

Two different surgical methods were used for chronic 
implants. In the one-stage procedure, all devices were 
implanted in the same surgery. In the two-stage procedure, 
the bone plate for subsequent connector attachment was first 
screwed to the femur, and the animal subsequently was 
allowed to recover for over one month prior to USEA 
implantation in the second surgical stage. This recovery 
period was intended to promote greater osseointegration 
prior to the connector’s being subjected to external torques. 

Animals were maintained on isoflurane anesthetic with 
mechanical ventilation. The sciatic nerve of the left hindlimb 
was exposed as previously described [1-3]. The chronic 
connector was attached to the bone plate, and the 
containment system screen was laid flat under the nerve 
prior to high-speed insertion of the USEA into the nerve. 
The USEA was lightly glued to the nerve with veterinary-
grade cyanoacrylate tissue adhesive. The USEA and nerve 
were then lightly covered with Kwik-Cast, a two-component 
silicone elastomer. The containment system screen was 
closed prior to elastomer curing, and additional Kwik-Cast 
used to fill voids and to cover screen edges. The lead wires 

from the array to the connector followed a U-shaped course 
that did not cross any joints. 

C.  Post-Surgical Physiological and Behavioral Testing 

The four chronically implanted animals were followed for 
a period of one month (n = 1), two months (n = 1), and four 
months (n = 2) respectively, at which time the animal was 
sacrificed for quantitative histological analyses (data to be 
reported separately). 

Four physiological measures were obtained in post-
surgical tests, initially at frequent (sometimes daily) 
intervals, and subsequently at successively longer intervals. 
First, impedance measures were taken using a custom-built 
automated impedance tester [13] that provided estimates of 
the true tip impedance, independent of possible shunting to 
other electrodes. Second and third, unit recordings were 
obtained both when the animal was anesthetized (which 
presumably revealed sensory discharges), and when the 
animal was awake and moving (which presumably revealed 
motor as well as sensory discharges). To test the ability of 
the containment system to serve as an electrical shield to 
block contamination of neural recordings by myoelectric 
signals, recordings were obtained with either the on-array 
reference electrodes (within the containment system shield), 
or with conventional off-array reference wires (outside the 
containment system shield). Fourth, we measured the ability 
of the USEA to evoke motor responses, as monitored via 
fine-wire EMG electrodes (data to be reported separately). 

We also periodically assessed the animals’ locomotor 
behavior. 

D.  Wireless Recordings and Real-Time Neural Decodes 

Neural data were recorded via an INI-R5 (Integrated 
Neural Interface, Recording, version 5) or INI-R6 integrated 
circuit [11]. The INI chips were packaged in a quad flat pack 
(QFP) with up to 16 lead wires attached via a connector to a 
100-electrode USEA implanted acutely (n = 1 cat, 1 session) 
or chronically (n = 2 cats, 3 sessions) in cat sciatic nerve. 
Both INI chips are wireless low-power integrated circuits 
that receive power and commands inductively, and return 
wide-band neuronal and spike-threshold crossing data via 
digital radio-frequency telemetry. Cat ankle rotation, 
produced by the experimenter in anesthetized animals, was 
monitored via a goniometer.  A neural decode based on 
wirelessly recorded neural data was used to predict joint 
angle and to drive a prosthetic limb in parallel in real time. 
Correlation coefficients and RMS error were used to assess 
how closely the neural decode algorithm predicted 
movements of the biological limb. 

III. RESULTS 

Most importantly, unit activity was successfully recorded 
using USEAs implanted intrafascicularly in sciatic nerve for 
periods up to 4 months (the terminal experimental time 
point), and the containment system effectively eliminated or 
substantially reduced EMG contamination of unit recordings 
in the moving animal. In addition, neural signals obtained 
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