
  

  

Abstract— Monitoring the activity of specific neural 
pathways in a peripheral nerve is a task with numerous 
applications in implanted neuroprosthetic systems.  
Achieving selective recording using multi-contact nerve 
cuff electrodes is appealing because these devices are 
well suited for chronic use, but no viable general 
solution to the task of discriminating combinations of 
active pathways from extra-neural recordings has yet 
been proposed.  Bioelectric source localization 
approaches have been suggested, but their effectiveness 
is limited by the accuracy of the nerve model used to 
solve the forward problem.  We propose a model-free 
alternative to the pathway discrimination task, in 
which experimental data is used to estimate a solution 
to the forward problem.  The method was evaluated 
using a 56-channel cuff placed on the rat sciatic nerve.  
3 pathways were discriminated with a 94.2% success 
rate when individually active, whereas further 
improvements are needed in order to recover 
combinations of simultaneously active pathways. 
 

I. INTRODUCTION 
major bottleneck of current neuroprosthetic systems lies 
at the neural interface: the bi-directional transfer of 

information between the nervous system and an artificial 
device is limited, precluding the use of sophisticated closed-
loop algorithms that could accurately reproduce the close 
sensorimotor integration of the central nervous system 
(CNS).   

 Improving interfaces with peripheral nerves would be 
particularly valuable to the development of better 
neuroprosthetic systems, with applications ranging from 
bladder control to grasping [1-3].  Peripheral nerve 
interfaces are less invasive than brain-computer interfaces, 
with the potential to be implanted using minimally invasive 
interventions.  They innervate well delimited regions of the 
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body, giving their electrical activity clear functional 
relevance.  Lastly, they provide a window into the “inputs 
and outputs” of the CNS, and so are a valuable tool in 
understanding how the CNS processes information and 
generates motor commands. 
 Nerve cuff electrodes are a type of peripheral nerve 
interface attractive for its safety and relevance to long-term 
clinical use [4], but typically providing little information 
about the particular neural pathways responsible for the 
recorded whole-nerve activity.  As more sophisticated nerve 
cuffs with multiple recording contacts are produced [5], the 
question arises of whether improved spatial sampling of the 
electric potentials at the surface of a peripheral nerve can 
lead to the monitoring of specific pathways within that 
nerve.  We present a short review of previous approaches to 
selective recording using nerve cuffs, and illustrate how 
recent work by our group constitutes a flexible 
generalization of previous methods that provides a useful 
framework for the study of multi-pathway discrimination in 
peripheral nerves. 

 

II. REVIEW OF APPROACHES TO SELECTIVE NERVE CUFF 
RECORDING  

Multi-contact nerve cuffs may discriminate pathways by 
taking advantage of the fact that an action potential (AP) 
traveling along a given fiber will produce different 
measurements at different contacts, depending on the 
distance to each contact and the conductivities of the tissues. 
Early attempts examined the recording differences in 
traditional cuffs (with eight to twelve contacts) when APs 
traveled in various fascicles or pathways [6-9]. Developing 
this approach, later studies quantified the extent to which 
sources between and within fascicles produced different 
measurement patterns, using flat interface nerve electrodes 
(FINEs) [10,11]. However, identification of the active 
fascicle from the measurements was not discussed, beyond 
matching measurements with known patterns. Extending a 
pattern-matching methodology to situations in which several 
pathways may be simultaneously active and have varying 
levels of activity soon becomes infeasible. Other attempts to 
separate the activity of different fascicles based on 
extraneural recordings have included the use of blind source 
separation [12] and linear regression [13]. Both of those 
studies were limited to discriminating the activity of two 
fascicles. An earlier attempt to localize activity in the nerve 
with an eight-contact cuff used a very simplified model of 
the nerve’s electrical properties and therefore obtained only 
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coarse mappings [6]. Selectivity studies have also been 
reported that focused on discriminating activity related to 
specific innervated muscles, rather than to specific fascicles 
[14]. 
 

III. BIOELECTRIC SOURCE LOCALIZATION IN PERIPHERAL 
NERVES 

 
A generalization of the approaches described in the 

previous paragraph is to formulate the task as a problem of 
bioelectric source localization.  This framework makes it 
possible to account for distributions of multiple 
simultaneously active sources, as well as to apply 
regularization methods that can incorporate a priori 
information about the problem and help deal with noise in 
the measurements.  We have recently investigated whether 
methods adapted from electroencephalography (EEG) source 
localization could fruitfully be applied to the peripheral 
nerve case [15, 16].  Simulations and experimental results 
indicated that a crucial condition for useful performance is to 
have an accurate model of the nerve with which to solve the 
forward problem.  The forward problem consists of 
computing the measurements that would be produced by a 
source at a known location, and can be solved for example 
using finite element modeling.  The influence of each source 
location on the measurements is encoded in a matrix known 
as the leadfield.  An inaccurate leadfield is an obstacle to 
solving the inverse problem, which consists of recovering 
the source distribution from the measurements.  Our work 
focused on a rat sciatic nerve (1 mm diameter) surrounded 
by a “matrix” design multi-contact spiral nerve cuff [5], and 
found that the source localization problem as traditionally 
formulated was too sensitive to modeling errors and noise to 
be reliable.   

In a similar study, Wodlinger and Durand showed that, 
with a FINE placed on a large nerve, major fascicles can be 
successfully identified using a beamforming approach with 
knowledge only of the electrode geometry [17, 18]. These 
results are promising and highlight the influence of nerve 
size and electrode geometry on performance, however it is 
unclear what resolution could be achieved in vivo without a 
more accurate model of the nerve’s anatomy, or in the case 
of combinations of several simultaneous sources. 

 Because these methods are derived from the EEG source 
localization literature, a summary of the differences between 
the EEG and peripheral nerve contexts is useful in 
interpreting the results described above (Table 1).  Briefly, 
the EEG case can generally benefit from better signal to 
noise ratios and lower modeling errors.  These observations 
are consistent with our findings in [15, 16].  The peripheral 
nerve case does, however, benefit from an experimental 
advantage: many neural pathways can be activated 
experimentally in a well controlled manner, using techniques 
ranging from direct electrical stimulation (e.g. intra-
operatively) to cutaneous stimulation of innervated 
dermatomes.  In contrast, it is very difficult to 
experimentally isolate particular brain regions while 
ensuring that activity in other regions is limited.  In the next 

section, we describe how this feature of peripheral nerves 
can serves as the basis for a novel and flexible framework 
for spatially selective nerve cuff recordings. 

TABLE I.  CONTRAST OF FACTORS AFFECTING EEG VS. PERIPHERAL 
NERVE SOURCE LOCALIZATION 

EEG Peripheral Nerve 
 

Larger region, more pronounced 
differences between recording sites 

(+) 
 

 

Smaller region, less pronounced 
differences between recording 

sites (-) 
 

Lower noise can be achieved by 
trial averaging (+) 

 

High noise, more limited 
opportunity for averaging in 

neuroprosthetic applications (-) 
 

 

Subject-specific brain models can 
be obtained via MRI and used to 
construct accurate leadfields (+) 

 

 

Nerve-specific models cannot 
currently be obtained in vivo (-) 

 

Difficult to isolate individual brain 
regions experimentally (-) 

 

Feasible to isolate certain 
individual pathways 
experimentally (+) 

 

IV. A MODEL-FREE APPROACH TO THE FORWARD PROBLEM 
We have recently proposed an approach in which the 

solution of the forward problem is estimated using a training 
set of experimental single-pathway recordings, rather than a 
finite element model of the nerve [19].  In this way, 
difficulties due to model accuracy are alleviated by taking 
advantage of factors specific to peripheral nerves, namely 
the ability to experimentally isolate pathways.  Furthermore, 
the problem remains formulated as an inverse problem of 
source localization, making it possible to: (1) deal with 
combinations of simultaneously active pathways with 
different intensities; (2) apply regularization methods to deal 
with noise levels and incorporate any available a priori 
information.  The method is summarized here; more details 
can be found in [19]. 

 
A. Data Collection 
Acute experiments were performed on five male Long-

Evans rats (old breeders, 640 g to 850 g). All animal care 
and use procedures conformed to those outlined by the 
Canadian Council on Animal Care (CCAC).   A “matrix” 
design polyimide spiral nerve cuff electrode [5] was placed 
on the sciatic nerve and used to record the nerve activity. 
The matrix cuff had a length of 23 mm, a diameter of 1 mm 
and 7 rings of 8 contacts, for a total of 56 contacts. To 
stimulate the nerve branches, three tripolar polyimide spiral 
nerve cuffs (8 mm long and 1 mm in diameter) were placed 
around the tibial, sural, and common peroneal nerves. By 
stimulating the tibial (T), peroneal (P), and sural (S) nerves 
nerves distally, we could control which of the fascicles was 
active at the level of the recording cuff.  The measurements 
from the recording cuff were acquired using a SynAmps2 
64-channel amplifier (Neuroscan Inc., USA), with a 
sampling rate of 20 kHz and a gain of 2010. The signals 
were band-pass filtered between 0.3 and 3 kHz. The 
reference for the recordings was a contact included in the 
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matrix cuff design and located just outside the cuff [5]. A 
needle electrode in the calf was used as the ground. 

The tibial, peroneal, and sural nerves were stimulated 
individually and in every combination. Compex Motion 
stimulators (Compex SA, Switzerland) were used to 
generate the pulses, which had estimated durations of 2-4 μs 
and amplitudes in the 0.7 to 3.8 mA range. These pulses 
were able to reliably produce action potentials in the nerve, 
as indicated by muscle twitches. 100 trials were conducted at 
2 Hz for each combination. The amplifiers were not blanked 
during the stimulation due to equipment restrictions; the 
stimulation pulses did not overlap with the neural signal, and 
the amplifiers did not saturate, but they were susceptible to 
an impulse artifact with a time constant of approximately 0.5 
ms and thus overlapping with the signal of interest. To 
compensate for this, the measurements were converted to a 
common-average reference, thereby eliminating the common 
artifact signals. 
 

B. Construction of the Leadfield 
Solving an inverse problem of bioelectric source 

localization requires a solution to the forward problem, 
which predicts influence of each source location on the 
boundary measurements. The relationship between the 
sources and the measurements can be expressed as shown in 
Eq. 1, where d is an Mx1 vector containing the recorded data 
from the M electrodes contacts, j is an Nx1 vector whose 
entries represent the magnitudes of the sources at each 
possible location, and L is the MxN leadfield matrix whose 
entry (i,j) represents the influence of a unit source j on the 
potential recorded at electrode i. � is an Mx1 vector of 
additive noise. M is typically much smaller than N, making 
the problem ill-posed. 

 
(1) 

The source localization problem is then to recover j based on 
the measurements and the estimate of L.  

In the formulation adapted from EEG the sources are 
current dipoles distributed in a grid covering the 
endoneurium of the nerve; L contains one column for each 
grid point [16,17].  In our model-free approach, the leadfield 
consists instead of observed measurement vectors that are 
obtained from a training set of single-branch recordings, 
made possible by the fact that the branches can be isolated 
experimentally.  Each leadfield column is a 56-element 
vector corresponding to an instantaneous spatial pattern of 
activity produced by an entire stimulated pathway. Each 
pathway will be associated with several vectors, because 
different patterns of activity will be produced as a compound 
action potential (CAP) travels in that pathway along the 
length of the recording cuff.  The training set includes only 
observations of single-pathway activity, because the system 
should be able to identify combinations of pathways based 
only on knowledge of the single-pathway base cases. The 
main steps are summarized in Fig 1; a detailed description of 
the methods is available in [19]. 

The trials were divided into a training set and a testing set, 
for each of the three single-pathway case (T, P, S). In the 
case of the multi-pathway combinations (TP, TS, PS, TPS), 
all trials belong to the testing set. In each single-pathway 
case, the trials were divided into 5 groups, and the 
performance measured using 5-fold cross-validation. The 
multi-pathway performance was evaluated 5 times, using a 
different training set each time but always the same testing 
set (all trials). 

For each single-pathway case, the set of distinct 
measurement vectors that occur within the training set was 
identified. Each new vector was compared to all previously 
observed vectors to determine whether it was a new pattern 
or one that had already been recorded [19]. For each trial, 
the measurement vectors used were from a time interval 
delimited by the peaks of the action potential recordings at 
the first and last contacts, plus 0.1 ms before and after this 
interval. A collection of vectors is built using these time 
instants from all the training set trials corresponding to a 
given stimulated nerve (Fig. 1).  

C. Identification of Pathway Combinations 
As long as there are more columns than rows in the 

leadfield, the problem remains underdetermined, and the 
process for solving the inverse problems remains similar to 
the process when using a model-based leadfield.  We used 
Tikhonov regularization with a weighted minimum-norm 
method (WMN) [20].  Given that the solution is expected to 
be sparse (only a small number of pathways are expected to 
be active at once), we apply the FOCUSS algorithm [21] to 
the initial WNN solution.  The regularization parameters are 
chosen using the L-curve method [22]. 

 

V. RESULTS 
Fig. 2 shows the mean of the three activity indices for 

each pathway combination and each rat (the activity index is 

 
Fig 1:  Flowchart illustrating the main steps of the model-free leadfield 
construction process. Reproduced from [19]. 
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a summary of the values of all the variables corresponding to 
a given branch, over the time interval of a trial; see [19] for 
the details regarding the computation of the activity indices). 
In the single-pathway cases the algorithm was successful in 
identifying the stimulated pathway as the most active.  
Selecting the pathway with the highest activity index led to 
correct identification in 94.2% of single-pathway case. In the 
multi-pathway cases, the algorithm was less successful in 
identifying the active pathways. Although a few cases were 
close to being accurate, inactive pathway activities estimates 
were still high, and on the whole the method was not 
reliable: based on Fig. 2, the activity indices were 
thresholded at 0.2, leading to the correct combination of 
pathways being identified in 25.3% of multi-pathway cases. 

 

VI. DISCUSSION 
A number of factors will affect the selectivity of nerve 

cuff recordings, include cuff geometry, number and location 
of contacts, nerve anatomy, and signal to noise ratio.  In the 
context of an inverse problem of source localization, the 
selected regularization methods and a priori information 
incorporated will also play a significant role in the 
performance.  Future work must therefore focus on 
understanding how these different factors can be controlled 
to achieve maximum selectivity and achieve effective 
monitoring in multi-pathway situations.  It is also necessary 
to examine performance when natural neural activity is used 
rather than direct stimulation, which was used here to enable 
us to precisely control which pathways were active in a 
given trial.  The contribution of this study is to provide a 
method for recovering a source distribution from extra-
neural recordings that is flexible and designed specifically 
for peripheral nerves, and can be used to systematically 

investigate the factors listed above in order to maximize 
nerve cuff selectivity.    
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Fig 2:  Means of the activity indices for the three pathways, for each rat and 
pathway combination. T: Tibial,P: Peroneal, S: Sural. The nerves being 
stimulated are outlined in red. Reproduced from [19]. 
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