
  

 
Abstract—The ability to recover signals from the 
peripheral nerves would provide natural and 
physiological signals for controlling artificial limbs and 
neural prosthetic devices.  Current cuff electrode systems 
can provide multiple channels but the signals have low 
signal to noise ratio and are difficult to recover. Previous 
work has shown that beamforming algorithms provide a 
method to extract such signals from peripheral nerve 
activiy [1].  This paper describes in-silico and in vivo 
experiments done to validate that method in a more 
realistic case.  A modified beam forming algorithm 
capable of significantly decrease cross talk between 
channels is described and the results of the a 16-channel 
Flat Interface Nerve Electrode used to recover signals 
from the sciatic nerve in rabbit while the distal tibial and 
peroneal branches were stimulated The beamforming 
spatial filters were able to distinguish which branch was 
being stimulated, and in many cases how strongly, over a 
large range of stimulation intensities. 
 
       INTRODUCTION 

Recording from peripheral nerves presents the 
opportunity not only to recover the signals of a wide variety 
of physiological sensors, but also physiological command 
signals controlling the functions of muscles and other 
organs.  Even though this technology presents a variety of 
opportunities, it also presents several challenges.  Attempts 
to address the mixing of biological signals have been made 
for a number of approaches. Classifiers have shown 
interesting results at decoding hand movements, and spatial 
filters have also been recently applied to this problem. 
Tesfayesus and Durand [3] recently applied blind source 
separation to perform similar de-mixing of the recorded 
signals, without the need for a model of the nerve geometry.  
These techniques will be discussed below with particular 
emphasis to those presented in Wodlinger and Durand [1] as 
they been have investigated thoroughly in both simulation 
and animal models. 

Signal separation algorithms fall into three main 
categories: Inverse Problems (IP), Blind Source Separation 
(BSS) and Beamforming/Spatial Filtering (BF).  These 
techniques are each reviewed below. 

1. Inverse problem solutions (IP) 
Inverse problem algorithms are based on the idea that a 

rigorous and complete forward model of the system can be 
found.  This model can then be inverted so that for a given 
output one can calculate a (usually infinite) set of likely 
inputs.  [4].  However, as a matrix inversion is required, the 
results can be slow and sensitive to model inaccuracy or 
choice of regularization parameter. 

2. Blind source separation 
Blind source separation uses statistical information in the 
recordings to automatically de-mix the neural signals.  This 
technique makes two important assumptions; the first is that 
the neural signals are only mixed linearly, an assumption 
supported by Maxwell’s equations of the quasi-static 
propagation of current in the volume conductor.  The second 
assumption is that the neural signals are statistically 
independent, such that maximizing the statistical 
independence of linear combinations of the recordings can 
reproduce them. This assumption is less clear and may 
depend on the nature of the training data available and the 
relationship between the signals of interest. 

BSS algorithms also introduce a permutation ambiguity, 
where sources can appear swapped between successive time 
windows.  This ambiguity can be readily solved using 
techniques presented in [3], who demonstrate the benefits of 
BSS techniques to nerve cuff recordings.  

3. Spatial Filtering or Beamforming   
Spatial filtering, or Beamforming, presents a 

compromise between techniques requiring extensive 
accurate models and those requiring none.  Rather than 
trying to explicitly invert the given model, these techniques 
calculate a set of (usually linear) filters which can be applied 
to new data to estimate source levels.  Spatial filtering 
methods are particularly well suited to nerve cuffs because 
of the spatial separation between functional (fascicular) 
sources, and small internal area of the cuff.   

Filters can be calculated using a number of methods, 
from simple Laplacian operators used to take the second 
spatial difference to methods requiring the sensitivity fields 
of each contact on the electrode.  These techniques are 
generally very fast after training, requiring a simple matrix 
multiplication at each time step.  However they suffer from 
poor performance compared to IP algorithms, and so they 
are often combined with a post-processing stage to improve 
performance.  This post-processing is usually adaptive in 
nature, for example the large array of techniques presented 
in [5].   

A variation of a beamforming technique is presented in 
the following sections, and in more details in [6].  This 
beamforming filter is calculated using an FEM model of the 
nerve cuff in saline, and includes a static (i.e. non-adaptive) 
post-processing technique to improve separation quality 
without requiring statistical independence of the signals.  
Results are presented to demonstrate the performance of the 
system on simulated and animal model data. 

 
METHODS 

Beamforming Algorithm mapping 
A computer model of a flat interface peripheral nerve 

electrode (FINE) placed on a homogenous nerve model is 
modeled (Fig. 1).  This Finite Element Model (FEM) may be 
used to calculate the lead-field matrix, or forward problem, 
which relates the voltage recorded on each contact to the 
source current at each voxel within the nerve.   

 
Recovery of neural activity from nerve cuff electrodes  

B Wodlinger Student Member, IEEE and DM Durand, Fellow IEEE 

Manuscript received April 15, 2011.  Financial support was  provided by 
NIH grant 5R01NS032845-11 to DM Durand. 
B. Wodlinger is currently in the  Dept. of Physical Medicine & 
Rehabilitation University of Pittsburgh, Pittsburgh, PA 
D.M. Durand is with Case Western Reserve University, Neural 
Engineering Center, Cleveland OH 44118 USA 
 

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 4653

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011



  

To calculate the Beamforming Filter Matrix, the weights (ti) 
on the sensitivity vectors (S) for each contact are optimized 
for a source signal located in a single ideal pixel (δi).  The 
following equation (1) is solved for each pixel i where,  

iiSt δ=  (1) 
Assuming n recording contacts and m pixels in the 

desired reconstruction, the variables are S{mxn}, the 
sensitivity matrix, and ti

{nx1} the linear coefficients of the 
Beamforming Filter Matrix.  Note that this equation is 
entirely independent of time and considers only the static 
behavior of the model.  For increased efficiency, the reduced 
QR factorization of S{mxn} is first calculated so that for δi 
equal to the delta function at index i, the solution reduces to 
Equation 2, below, where q*

i is the ith row of Q (since Q is 
orthogonal, the transpose acts as an inverse on the range).  
Normalization is performed for each set of weights, as in 
Equation 3. 

*\ ii qRt =  (2) 

i

i
i St

tt =  (3) 

The column vectors ti can then be concatenated to form 
the Beamforming filter matrix T{mxn}, which operates on a 
single time point t of observed data (o{nx1}) to produce the 
estimated activity at each pixel (â{mx1}) at time t , as in 
Equation 4.  This activity vector can then be displayed as an 
image of the estimated activity in the plane of interest.  
Repeated application of the Beamforming filter matrix at 
different time points gives the time dependence to this 
procedure.  

Toa =ˆ  (4) 
When the Beamforming filter matrix is multiplied by the 

vector of voltages on each contact (Equation 4), an image is 
created providing an estimate of the activation of each pixel 
within the cross-section of nerve.  A simple local-maxima-
based algorithm was used to locate sources in the estimate 
using automatic thresholding to remove areas of low activity 
[7]. Morphological opening (erosion followed by dilation) 
which removes islands and peninsulas below a given size 
from a binary image was applied to prevent the algorithm 

from finding small sources near the periphery associated 
with noise.  Once the fascicle locations are determined, the 
beamformers for those locations are applied to the full time-
signal in order to reconstruct the fascicular activity. Post-
processing techniques, such as RMS windowed averaging or 
BSS, can improve SNR and reduce cross-talk. 

Filters for a given real neural source may be calculated by 
averaging the columns of T over which activity is observed. 
To improve the determination of the spatial extent of the 
sources, new filters are generated to take into account 
information from other locations. The filters from each pixel 
are weighted by the value of the source image at that pixel 
and averaged.  This method places more emphasis on 
locations where the source is stronger, and provides some 
spatial averaging to reduce noise. 

   𝑓𝑖 = 𝑆𝑖𝑇𝑀  (5) 
Where n is the number of contacts, m is the number of 

pixels, fi
{1 x n} is the filter for the ith source, Si

{m x 1} is the 
source image for that source, and M{m x n} is the Beamforming 
Filter Matrix.  In order to reduce sensitivity to areas with 
high interference, the spatial locations causing interference 
are iteratively subtracted from each filter using the 
following: 

1. Calculate the interference (Iij) due to source j 
picked up by the filter for source i 
𝐼𝑖𝑗 = (𝑀𝑓𝑖

𝑇)𝑇𝑆𝑗 | 𝑖 ≠ 𝑗  (6) 
2. Subtract or add the difference between the images, 

multiplied by the amount of incorrect signal in each 
to reduce the amount of interfering signal 
𝑆𝑖 = 𝑆𝑖 − ∑ 𝐼𝑖𝑗�𝑆𝑗 − 𝑆𝑖�(𝑗|𝑗≠𝑖)   (7) 

3. Repeat, also recalculating the filters as in equation 
7, until: threshold reached, or previous iteration was 
ineffective at removing inference 

 
Experimental Methods:  
 
New Zealand White Rabbits were used for this study.  
Anesthesia was induced with ketamine/diazepam and 
maintained with alpha-chloralose and buprenex.  All 
protocols were approved by the Case Western Reserve 
University IACUC. Recordings were made from a novel 16-
channel tripolar Flat Interface Nerve Electrode (FINE) 
placed on the sciatic trunk near the popliteal fossa, and 
amplified by an RHA1016 preamplifer chip (Intan 
Technologies, Utah) with low-pass filter set at 5kHz before 
undergoing A-to-D conversion and sampling at 15 
kHz/channel. Tripolar stimulating FINE cuffs were placed 
on the Tibial and Peroneal branches of the Sciatic, distal to 
the recording cuff.  Stimulation was applied to one of these 
cuffs at a time using 130Hz, 5kHz, or 10kHz sinusoids.  
Signals were post-processed using an 800Hz high-pass filter 
to ensure removal of any remaining EMG artifacts.  A 
schematic of the setup is shown in Fig. 2. These stimulation 
paradigms allow both large CAP-like activity and lower-
SNR pseudospontaneous activity to be collected and used 
for three offline experiments.  
 

 

 
 
Fig. 1.  The model used to generate the Transformation 
Matrix.  The cuff has a 5mm x 1.5mm lumen and 8 recording 
contacts per side.  Recording is performed using a quasi-
tripolar technique by referencing the large outer electrodes at 
the openings of the cuff.  Note that this model includes no 
nerve geometry, and so can be solved before cuff 
implantation.  The cuff is made of silicone and enclosed in a 
large saline bath. 
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RESULTS 
Signal Recovery in computer models 
To form an accurate model of recorded neural activity a 
volume conductor FEM was combined with template models 
of action potentials as in [8-9]; [10].  These templates are 
randomly delayed and summed to create a simulated ENG 
signal with the desired temporal characteristics. 

In order to examine the localization capability of the 
beamforming filters, 

 
a simulated signal isolated to a particular fascicle was 
created as described above (Figure 4a).  The signal power 
(RMS) at each contact was calculated in 10 ms bins, and the 
beamforming localization procedure was applied to each one 
(Figure 3b) and the mean of the resulting list of sources 
calculated. This estimated location (green cross, Figure 3c) 
was then compared to the known location (red square, 
Figure 3c) and overlaid onto the fascicle map of the nerve 
for reference. This process was repeated and the results for 
one trial of all 10 fascicles at 40% noise are shown in Figure 
3d, where the estimated source is shown as a green circle 
and the true location a red square. Even at this noise level, 
the figure clearly shows that all 10 sources are located to 
within their respective fascicles.  

In noise-free signals, sources could be located to within 
0.14±0.03 mm (N=100) of their fascicle’s center.  As the 
noise level was increased to 40%, the mean and standard 
deviation both increase to 0.18±0.17 mm (N=100).  These 
results suggest that the location of single sources can be 
identified to 180±170 µm even in the presence of significant 
noise in the signal.   

In a physiological situation, there would likely be more 
than two fascicles from which to record (depending on the 
nerve and location).  Therefore, we tested the ability of the 
algorithm to recover signals from n simultaneously active 
fascicles, for n from 1 to 10, assuming the true source 
locations were known.  For up to 5 simultaneously active 
fascicles, the reconstruction accuracy is unchanged with a 
mean value of R=0.74±0.18 (N=50).  The accuracy 
decreases steadily as the number of active fascicles grows 
larger than 5, reaching 80% of the single fascicle value for 
10 simultaneously active fascicles.  Recording noise has a 

strong effect on the reconstruction, lowering the mean value 
of the n=1…5 trials to R=0.61±0.18 (N=50), and dropping to 
65% of the noisy single fascicle value for 10 simultaneously 
active fascicles. 
 
Signal Recovery  in rabbit sciatic nerves. 
The beamforming algorithm with Source-Based Filter post-
processing is demonstrated in a Rabbit sciatic nerve model.  
The high-density FINE was placed on the main trunk of the 
sciatic nerve near the popliteal fossa, while smaller 

 
 

 
Fig. 2.  Schematic of the experimental setup.  A 16-channel 
quasi-tripolar FINE is placed on the main sciatic trunk, and 
two tripolar stimulating FINE are placed on the peroneal and 
tibial branches, distally.  Stimulation is provided through 
isolated voltage-to-current stimulators and recorded using an 
Intan Tech. RHA1016 preamplifier. 

Figure 3.  Localization Using Realistic Signals. a) Sample signal 
of single fascicle activity recorded on a single contact.  The signal 
power (RMS) is shown as a dark thick line, while the raw signal 
is light and thin.  b) Localization results for each of the 3 marked 
timepoints in (a).  The estimated location is marked with a green 
circle, and the actual location with a red square.  c) To locate the 
source, the mean location of all reconstructions is used.  This 
final localization result is shown superimposed on the fascicle 
map, with the estimate marked by a cross and the true location by 
a square.  d) Localization results for all fascicles (single trial at 
40% noise).  The fascicle map is shown in grey, with true source 
locations as red squares, and a green circle centered on the 
estimated location.  10 trials, each 100ms, were performed for 
each of the 10 fascicles modeled.  The accuracy for the 40% noise 
trials, as pictured here, was 0.18±0.17 mm (N=100). Figure 
reproduced from [1] with permission from IEEE-TNSRE.  
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stimulating cuff electrodes were placed on the two main 
branches, the tibial and peroneal.  These smaller cuffs were 
stimulated with pulses to elicit compound action potentials 
which could be used to localize the activity from the two 
fascicle groups originating in the two branches.  Sinusoidal 
stimulation was also delivered to create more realistic 
patterns of activity.  This sinusoidal stimulation has the 
added benefit that any stimulation artifact can be easily 
removed from the recordings using filtering.  This is not the 
case for traditional pulse stimulation due to the large number 
of harmonics created. Low-frequency sinusoids were found 
to elicit CAP-like discharges in phase with the sinusoid, 
while high-frequency stimulation produced pseudo-random 
activity, as described in [11].   

High frequency sinusoids were used to elicit pseudo-
random activity in both fascicle groups in overlapping time 
windows.  This test was repeated on 5 separate nerves and 
one typical example is shown in Figure 4. The upper frame 

shows the mean of all 16 channels in the rectified and 100ms 
bin-integrated recording. The mean of the 16 channels is 
used for clarity, since the 16 raw channels are difficult to 
visualize.  The lower two frames show the outputs of the 
beamforming filter matrix with SBF post-processing acting 
on the rectified, 100 ms bin-integrated recording.  The black 
bars in the upper frame correspond to the stimulation 
intervals, with the Peroneal branch stimulated first.  The 
cross-talk between the two branches was 23±13%, 
calculated using periods when only one of the two branches 
was active, on 10 signals from 5 nerves. Without a reference 
for comparison uncontaminated by the overlapping activity 
the accuracy of the separation cannot be calculated outside 
the windows where only one source was active.  

 
DISCUSSION 

Many techniques have been proposed to separate 
individual fascicular signals from whole peripheral nerve 

recordings, including Inverse Problem techniques, Blind 
Source Separation, and Beamforming.  While Inverse 
Problem techniques rely heavily on the accuracy of the 
system model, Blind source techniques do not assume any 
particular model, requiring only linear mixing of the 
statistically independent source signals.  Beamforming 
represents a compromise, making use of some of the 
available model.  A beamforming algorithm was 
investigated, along with a Source-based Filter post-
processing, on both artificial and real neural recordings and 
demonstrated to provide R2=0.81±0.08 separation of signals 
from 2 independent fascicular groups. 

The ability to recover neural signals is only the first step 
in the larger goal of a closed loop system for neural control. 
A major component is the ability to control neural function 
with multiple contact nerve peripheral nerve electrodes. The 
following section describes in-silico and in-vivo experiments 
to study the ability of the FINE cuff to control the ankle 
joint. 
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Figure 4. Overlapping stimulation of the Peroneal and Tibial 
branches.  (Top) The mean of all 16 channels in the rectified, 
integrated recording.  Black bars indicate stimulation periods 
for the Peroneal (left) and Tibial (right) branches.  (Middle) 
Output after applying Tibial beamforming filter to the rectified, 
integrated signal. (Bottom) Output after applying Peroneal 
beamforming filter to the rectified, integrated signal.  The cross 
talk between the two branches was 23±13% (n=10).  
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