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Abstract—Mathematical models are used extensively in 
studies of cardiac electrophysiology and arrhythmia 
mechanisms.  Models can generate novel predictions, suggest 
experiments, and provide a quantitative understanding of 
underlying mechanisms.  Limitations of present modeling 
approaches, however, include non-uniqueness of both 
parameters and the models themselves, and difficulties in 
accounting for experimental variability.  We describe new 
approaches that can begin to address these limitations, and 
show how these can provide novel insight into mathematical 
models of cardiac myocytes.  

I. INTRODUCTION 

eart disease is one of the leading public health 
concerns in the United States.  Among the causes of 

death in patients with heart disease, sudden cardiac death 
due to ventricular arrhythmia is the most common.  Over the 
past several decades, researchers have made considerable 
progress in identifying the proteins that are altered in both 
congenital and acquired arrhythmia disorders.  By and large, 
however, these basic science advances have not been 
translated into successful new therapies for arrhythmia 
treatment or prevention. 

 Cardiac electrical activity results from dynamic 
interactions between dozens of important proteins.  The 
action potential (AP) results from the activity of Na+ 
channels, Ca2+ channels, and several different types of K+ 
channels, most of which exhibit complex time and voltage-
dependences.  The membrane also contains several 
electrogenic ion pumps and transporters that both regulate 
ion concentrations and generate ionic current that influences 
the AP.  Alterations in virtually any of these proteins can 
influence the function of the others through changes in 
membrane voltage and intracellular [Ca2+].  Moreover, 
cellular behaviors that can directly cause arrhythmias 
involve interactions between multiple participants.  A 
systems-level mindset is therefore required to develop 
strategies to prevent these events. 

 As a result of this complexity, mathematical modeling 
has long been a common method for gaining insight into 
both normal and pathological electrophysiology [1].  
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Contemporary cell models typically consist of a coupled set 
of 15-60 ordinary differential equations (ODEs), each of 
which describes the temporal changes in a variable such as 
membrane voltage, an intracellular ionic concentration, or a 
dimensionless variable describing ion channel gating.  A 
typical model also contains dozens of parameters with clear 
biological meaning such as the quantity of a particular type 
of ion channel, the speed with which that channel gates, or 
that channel's voltage dependence.  These myocyte models 
successfully recapitulate measurable cellular variables such 
as AP shape, Ca2+ transients, and how these depend on 
pacing rate.  A prominent example is the model of the 
guinea pig ventricular myocyte originally described by Luo 
& Rudy [2], then improved in several subsequent 
publications from this laboratory [3-5].  Models of this class 
have been used to provide insight into phenomena such as 
developmental differences in physiology [6], mechanisms of 
potentially arrhythmogenic early afterdepolarizations [7], 
and how mutations in ion channels lead to arrhythmogenic 
behavior in cells [8].   

 The vast majority of these studies, however, have 
adhered to the following paradigm.  Changes in ionic current 
behavior resulting from a perturbation are hypothesized 
based on experimental data and the investigator's intuition.  
Simulations performed under these altered conditions are 
compared with model results obtained under control 
conditions, usually with the baseline, published parameters.  
If the effects of the perturbation on the simulation results are 
similar to the experimental observations, the changes are 
considered provisionally sufficient to explain the altered 
behavior.  If the results do not match, additional changes to 
the model are sometimes considered.   
 It is important to note that investigations such as these 
suffer from several important limitations.  (1) Only 
conditions that are explicitly considered can be understood.  
A number of other changes might hypothetically contribute 
to the observed behavior, but these possibilities remain 
unknown until circumstance dictates that they be addressed.  
Since contemporary models contain dozens of numerical 
parameters, the investigator's imagination may become the 
factor that limits which possibilities are investigated.  (2) 
Although virtually all published models are validated against 
experimental data, the validation process is often incomplete 
and biased by whichever experimental studies are familiar to 
the investigators.  Perhaps as a result of this, competing 
models meant to describe the same cell type may exhibit 
dramatically divergent behavior [9-12].  (3) Most 
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investigations consider the published model to represent a 
typical sample and ignore variability between individuals, 
which may influence the comparison between computations 
and experiments. 
 Here we describe our recent work that begins to address 
these limitations of the standard paradigm.  We have 
developed novel methods to evaluate mathematical models 
of cardiac myocytes through systematic parameter 
sensitivity analyses.  We illustrate how these methods can be 
used to generate novel and testable model predictions, to 
constrain model parameters based on a systematic 
comparison of model output with data, and to understand 
variability between individuals within a population.  
Methods such as these are likely are likely to become 
important for understanding the susceptibility of hearts to 
arrhythmias.   

II. METHODS  

 The principle underlying our work is as follows.  The 
traditional approach to both experimental and computational 
physiology is to examine effects one at a time.  In contrast, 

we employ a relatively simple technique [10;13] based on 
parameter randomization, repeated simulations, and 
multivariable regression.  This strategy examines changes in 
many model parameters all at once, thereby providing a 
systems-level view of myocyte function and overcoming 
many of the limitations of the traditional approach. 

 Fig. 1 illustrates the method.  With the published set of 
parameters, the LivR guinea pig model [4] produces the AP 
and Ca2+ transient shown in Fig. 1A, top.  Randomizing the 
16 ionic conductances in this model causes different output 
with each model variant (Fig. 1A, bottom).  These 
randomly-varied parameters are placed in the input matrix 
X.  (Note:  we use the term 'conductances' generically, even 
though several parameters are not formally conductances.  
For instance, KSERCA, the maximal turnover rate of the SR 
Ca2+ ATPase, is termed a conductance for convenience) 
With each simulation, physiologically-important metrics, 
such as AP duration (APD) and Ca2+ transient amplitude 
(Δ[Ca2+]i) are computed and placed in the output matrix Y 
(Fig. 1B).  Thus, each column of X corresponds to a 
different ionic conductance, and the two columns of Y (in 
this example) are APD and Δ[Ca2+]i.  Typically simulations 
are performed with hundreds of model variants.  
Multivariable regression computes a matrix B that 
minimizes the difference between Y and the matrix of 
predicted outputs Ŷ = X*B.  Our work [10;13] has shown 
that, despite many non-linearities in the underlying 
differential equations, linear approximations of relationships 
between parameters and outputs are usually surprisingly 
accurate.  Moreover, although increasing the variability of 
the parameters in X decreases the accuracy of the regression 
model, this generally has minimal effects on the values of B 
[10].   

III.  RESULTS  

A. Importance of parameter sensitivities 

The values in the regression matrix B (Fig. 2) are 
parameter sensitivities – each value indicates how changing 
a particular parameter influences a specific model output.  In 
contrast to the traditional approach of investigating 
parameters one-at-a-time, this procedure simultaneously 
provides information about many model parameters.  The 
matrix B has two interpretations that are pertinent to the 
proposed work.  First, each value in B represents a 
quantitative and testable model prediction, e.g. 70% 
inhibition of rapid delayed rectifier current IKr leads to a 
20% increase in APD.  Alternatively, since the conductances 
in each myocyte can be expected to be different, B can 
predict functional differences between individuals.  Thus, if 
the row vector x represents how much the conductances 
deviate from control values in a given myocyte, then ŷ = 
x*B predicts how APD and Δ[Ca2+]i differ from the control 
values in that particular cell. 

 The parameter sensitivities (Fig. 2) show several 

 
Fig. 1.  Regression procedure.  (A) APs (left) and Ca2+ transients 
(right) simulated with the LivR model.  Standard parameters shown at 
top and 30 simulations with sets of random parameters shown at 
bottom. (B) Input and output matrices X and Y have the indicated 
structures.  In this example, outputs are: 1) AP duration, 2) Ca2+ 
transient amplitude.  The regression matrix B is derived such that 
X*B approximates Y. 
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somewhat surprising predictions, even for a well-studied 
model system such as the guinea pig ventricular myocyte:  
(1) changes in conductances have greater effects (in 
percentage terms) on Δ[Ca2+]i than on APD (note different 
y-axis scales); (2) increases in background Ca2+ current 
(GCaB), a depolarizing current, are predicted to shorten rather 
than lengthen APD; (3) changes in Na+-K+ pump activity 
(KNaK) are predicted to have greater effects on Δ[Ca2+]i than 
changes in SERCA pump activity (KSERCA).  Most these 
predictions can be tested experimentally by applying drugs 
that selectively inhibit particular ion transport mechanisms 
and quantifying the change in the cellular response (i.e. 
APD or Ca2+ transient amplitude). 

By examining model parameters all-at-a-time rather than 
one-at-a-time, this method generates a rich set of predictions 
that can guide experiments based on which experimental 
tests are most likely to generate interesting results.  
Moreover, a strong model should be able to recapitulate not 
just the baseline behavior of the myocyte, but also to 
successfully predict how the cell responds to a wide range of 
perturbations.  By generating a large number of predictions 
all at once, this type of analysis provides a framework for a 
systematic comparison of model output with experimental 
data.  If such analyses become a standard component of 
model development and testing, this can help overcome the 
limitation that model validation is often limited and biased. 

B. Examining additional parameters and outputs 

The parameters shown in Fig. 2 represent ionic-current 
maximal conductances and maximal rates of ion transport of 
pumps and transporters.  In recent publications, we have 
extended this procedure to include additional parameters that 

control either the kinetics of ion channel gating or the 
voltage-dependences of channel activation and inactivation 

[10].  This is relevant because it allows for a direct 
comparison between the predicted quantitative effects of a 
change in ion channel abundance versus a change in channel 
kinetics of voltage-dependence.  Mutations, for instance, 
that may affect both abundance and channel properties such 
as kinetics can be interpreted in this framework. 

Additionally, APD and Δ[Ca2+]i were chosen for this 
example because these commonly-measured variables have 
obvious physiological relevance.  The method has 
successfully analyzed, however, more abstract outputs such 
as stimulation threshold, and outputs directly related to 
arrhythmias, such as the pacing rate at which APD alternans 
first appears [10;13].   

A simple extension of this technique can be implemented 
to relax the assumption that changes in model parameters 
cause independent effects on outputs.  Additional columns, 
consisting of the products of individual parameters, can be 
added to the matrix X.  This approach can be used to explore 
potential nonlinear interactions between parameters. 

C. Understanding the behavior of a population 

The parameter sensitivity analysis method described 
above is useful for understanding how variability within a 

 
Fig. 2.  Regression-derived parameter sensitivities indicate how much 
each conductance affects AP duration (top) or Ca2+ transient 
amplitude (bottom).  

 
Fig. 3.  Variability within a population of candidate models. (A) 
Distribution of APD in 296 LivR guinea pig myocytes with randomly 
varying parameters. (B) In two particular myocytes, the APD 
(expressed relative to control) can be predicted from the dot product 
of the change in parameters (expressed in logarithmic units relative to 
control, where increases are positive and decreases are negative) and 
the vector of parameter sensitivities.  The top and bottom cells are 
predicted to have APDs that are greater than and less than control, 
respectively.  
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population in ion channel expression or function translates 
into variability in function.  Remember that the initial step in 
the analysis is to run simulations with multiple candidate 
models, thereby generating a large set of pseudo-data.  Fig. 
3 illustrates how this can be exploited to understand 
differences between individuals.  Fig. 3A shows the 
variability in APD within the sample of 300 candidate 
models, and Fig. 3B illustrates how the regression model can 
predict the behavior of individual myocytes within the 
population.  The matrix formulation of the regression 
problem provides an extremely convenient framework for 
this purpose.  For any particular myocyte, the change 
(relative to control) of a model output such as APD can be 
computed as the dot product of that cell's parameters and a 
vector of parameter sensitivities.  This relationship follows 
from the equation Ŷ = X*B.  Fig. 3B illustrates this 
schematically for two myocytes selected from the population 
of 300.   

D. Constraining model parameters. 

The strong correlations observed between parameters and 
most outputs has the important consequence that the reverse 
procedure can be performed.  That is, a set of 
experimentally-measurable metrics can be used to determine 
the model parameters required to produce those outputs.  
Mathematically, this procedure merely requires swapping 
the input and output matrices and performing the "reverse 
regression" such that a close approximation of the 
parameters X can be calculated as X ≈ YBreverse.  In a recent 
publication [13] we demonstrated that this procedure can 
successfully constrain conductances in several mathematical 
models of cardiac myocytes.  This work, along with other 
recent work from our group [14], represents a formalization 
of the intuitive principle that a model's parameters are more 
likely to be uniquely constrained when the model is asked to 
reproduce many, rather than just a few, experimental results. 

IV. CONCLUSION 

Methods to systematically evaluate mathematical models 
of heart cells are  likely to become increasingly important 
for increasing the rigor of the model-experiment comparison 
and to generate new physiological insight in coming years.  
We have illustrated several possible applications of such 
techniques, including:  (1) generation of novel predictions 
through all-at-a-time simulation tests; (2) treatments of 
heterogeneous populations of myocytes, and  (3) methods 
for automatically constraining model parameter via a 
thorough comparison with data.  
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