
  

  

Abstract— Cardiac fibrosis is an important form of 
pathological tissue remodeling. Fibrosis can electrically-
uncouple neighboring excitable cardiomyocytes thus acting as 
an obstacle to electrical propagation. In this study, we 
investigated the effects of fibrosis spatial pattern on electrical 
propagation in control, decreased maximum sodium 
conductance, and increased intracellular resistivity conditions. 
Simulations were performed with a monodomain approach and 
a realistic canine ionic model. We found that the propagation 
failure is highly dependent on the spatial pattern of fibrosis for 
all conditions studied with maximum sensitivity for patterns 
with combination of small and large clusters. However, the 
effect is particularly sensitive to reduced sodium current 
condition where conduction block occurred at lower fibrosis 
density.  

I. INTRODUCTION 

Atrial fibrillation (AF) is the most common sustained 

clinical arrhythmia, touching several million Americans. 
There is evidence pointing to a role for tissue fibrosis in AF 
maintenance. Atrial fibrosis is associated with conduction 
abnormalities in experimental congestive heart failure (CHF) 
in dogs [1, 2]. Spatial dispersion of fibrosis has been shown 
to be different between systolic and diastolic heart failure in 
human [3]. Fibrosis occurs most commonly as a reparative 
process to replace dead cardiomyocytes [4]. 
The replacement of electrically active atrial myocytes that 
have died by electrically inactive collagen could result in 
electrical isolation of surrounding myocytes and the 
formation of barriers to wave propagation. Variation in 
fibrosis patterns induced different propagation delays in 
experiments [5]. Diffuse fibrosis resulted in a decrease in 
velocity of propagation in both at the 2D and 3D [6, 7]. It 
has been shown that obstacles can anchor and thus stabilize 
re-entering electrical activity [8, 9]. The wavefront-boundary 
interaction is also a key determinant of curvature of the re-
entering front, which can influence propagation velocities 
[10, 11] and refractory periods [11, 12]. A recent study 
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proposed that the spatial pattern of fibrosis may be an 
important player in AF stabilization [13]; however the 
understanding of this phenomenon remains limited. In order 
to better understand the role of the fibrosis spatial pattern 
and interaction with tissue electrical remodeling, we studied 
the effect of fibrosis on the propagation of the electrical 
activity as a function of the density (Df) and spatial pattern 
of fibrosis in different conditions (control, decreased sodium 
current, and increased tissue resistivity).  

II. METHODOLOGY 

A. Stochastic model of fibrosis patterns 
We developed a novel simple model with which various 
patterns of fibrosis clusters can be built. The following 
sequential steps are repeated to build different 2-D fibrosis 
patterns with fibrosis density Df:  

1. A random number p is generated from an uniform 
distribution, 

2. A new fibrotic site (100×100 μm2) will touch an 
existing fibrotic area if p > pthr given that open sites 
satisfying this condition still exists,  

3. The position of the new fibrotic site is randomly 
chosen in the set of sites respecting the previous 
condition, 

4. Redo steps 1-3 to increase the density of fibrosis Df 
to the desired amount. 

The probability for a new site to fall in a site without 
neighboring fibrosis is thus given by the parameter pthr 
unless Df is high enough that all remaining new fibrotic sites 
will be touching existing clusters. 

B. Monodomain representation of atrial tissue 
Fibrosis patterns are integrated by replacing cardiac cells 
(100×100 μm2) of the discretized 2-D isotropic substrate by 
holes with no-flux boundary conditions (disconnected space 
with no leak). A continuous and homogeneous monodomain 
representation of cardiac tissue was simulated with temporal 
and spatial variation of the transmembrane potential (V) 
given by eq.(1): 

( )2 ,
2 m ion

i

a VV C I V f
r t

∂∇ = +
∂


(1) 

where a =5 μm, ri = 75 Ohm-cm in control, and Cm=100 μF. 
Iion was calculated with the ionically-realistic Ramirez-
Nattel-Courtemanche canine atrial ionic model[14].We 
studied three groups of tissue: control (ctl), decreased 
maximum sodium conductance by 50% (0.5xGNa), and 
increased tissue resistivity to 500 Ohm-cm (6.66xri). The 
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However, how precisely fibrosis pattern alters electrical 
propagation with and without electrical remodelling remains 
unclear.  
Here we show that independently of the substrate electrical 
characteristics, the spatial pattern of fibrosis modifies the 
amount of fibrosis needed for conduction block. However, 
block of the sodium current results in a shift of Rblock to 
lower Df. Thus, rapid electrical activity or decreased 
expression of sodium channels will favour conduction block 
at lower fibrosis density, as is otherwise the case for diffuse 
fibrosis[18]. Surprisingly, increasing tissue resistivity 
(resulting in almost 1/3 of the control velocity of 
propagation) did not have a strong effect on the sensitivity to 
conduction block and heterogeneity of propagation (see 
Figs. 2 and 3). An exception is for small pthr where 
increasing the resistivity seems to favour propagation in 
tissue with higher fibrosis density accompanied by a 
decrease in conduction heterogeneity (see insert in fig. 3).  
An interesting result is the non-monotone variation in the 
heterogeneity index that is seen with decreased maximum 
sodium conductance (0.5×GNa) which peaked in the region 
where propagation failure occurred at lower Df (fig. 2). This 
result is consistent with the usual interpretation that larger 
conduction heterogeneity is a marker of greater sensitivity to 
arrhythmia. However, the same interpretation seems not to 
apply to control and increased tissue resistivity conditions. 
The exact mechanisms remain to be elucidated. 
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