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Abstract— To understand the control and regulation of 
mitochondrial energy metabolism a generalized matrix 
method of Metabolic Control Analysis has been applied 
to a computational model of mitochondrial energetics. 
The computational model of Cortassa et al. (2003) 
encompasses oxidative phosphorylation, the tricarboxylic 
acid (TCA) cycle, and ion dynamics across the inner 
mitochondrial membrane. Control of respiration and 
ATP synthesis fluxes were found to be distributed among 
various mitochondrial processes. Control is shared by 
processes associated with ATP synthesis and ATP/ADP 
transport, as well as by Ca2+ dynamics. The analysis of 
flux control coefficients and response coefficients has led 
to the notion of control by diffuse loops, that points to the 
regulatory interactions exerted by processes that are 
mechanistically only indirectly related with each other. 
The approach we have utilized demonstrates how 
properties of integrated systems may be understood 
through applications of computational modeling and 
control analysis. 

I. INTRODUCTION 
One of the objectives of Systems Biology is to 

understand the dynamics of networks of processes in living 
systems. Such understanding encompasses not only the 
composition of those networks but also their organization in 
terms of spatio-temporal dynamics and their control and 
regulation. Metabolic Control Analysis (MCA) addresses the 
question of what controls, and to what extent, the flux 
through a metabolic pathway at the steady state [1, 2]. It 
provides a conceptual framework to quantify the control 
exerted by a process on metabolic fluxes or metabolite 
concentrations that could be applied regardless of pathway 
complexity [3]. 

Given a network of processes of any complexity, the 
rates of the individual reactions constituting such a network 
both influence, and are influenced to a certain extent by, the 
rates of the other interacting processes. In order to quantify 
control at the steady state, a series of coefficients have been 

introduced. The most commonly used is the flux control 
coefficient,
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with Ji representing the flux of interest, and Ek the 
activity of process k, whose control is quantified by i

k
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This analysis requires the system to be continuous 
(differentiable) in the neighborhood of a steady state.  
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The elasticity coefficient, kv
Sjε , quantifies the dependence 

of the rate of a specific process, k, on the concentration of an 
intermediate or effector in the network, SJ. The elasticity 
coefficient as defined in Eq. 2, computes the magnitude by 
which an enzyme activity (e.g. ATP synthase, vk) changes 
upon variation in the level of a substrate or an effector (e.g. 
ADP, Sj)): 
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Control coefficients reflect global properties of the 
network since they dependent on the rates of all processes in 
the system. Unlike control coefficients, elasticities depend 
upon local properties of the enzyme, and the concentrations 
of its substrates and effectors. In practical terms, elasticities 
correspond to the slope of the relationship between the initial 
rate of an enzyme-catalyzed reaction and the concentration 
of the substrate (or an effector).  

On the other hand there are the response coefficients. 
which measure the fractional change in flux, e.g. respiration, 
in response to a fractional change in a parameter P (e.g., an 
effector such as Ca2+) other than enzyme activity [4]. The 
response of a pathway to an effector depends on two factors 
[5]: (i) the extent of control exerted on the pathway by the 
enzyme that is the effector’s target, and (ii) the strength or 
elasticity of the effect of P on that enzyme. The response 
coefficient defined in this manner is the product of the 
control and elasticity coefficients. According to all the 
definitions stated above, metabolites or ions regulate, while 
changes in enzyme activity or posttranslational 
modifications control. 

In the present work, we apply the stoichiometric matrix 
method of Reder [3] to analyze control exerted by various 
mitochondrial processes on oxidative phosphorylation 
(OxPhos). This method generalizes earlier MCA tools [2, 6, 
7]. Calculation of the control and response coefficient 
matrices and changes in steady-state fluxes induced by 
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perturbations of the system permit a deeper understanding 
functional significance in terms of control of different nodes 
in the network of processes encompassed by the 
mitochondrial energetics model.  

II. ANALYTICAL PROCEDURES 
In the framework of MCA, Reder [3] developed a 

generalized linear algebraic method that enables analyzing 
the sensitivity of metabolic systems to perturbations 
triggered by either a change in the internal state of the 
system or by the environment. The departure point of the 
analysis is the stoichiometric matrix, obtained from the set 
of differential equations of the model. The stoichiometric 
matrix defines the structural relationships between the 
processes and the intermediates participating in the 
metabolic network under consideration. The information in 
the stoichiometric matrix is independent of both the enzyme 
kinetics and the parameters that rule the dynamic behavior of 
the network. The second piece of information required to 
perform control analysis is the elasticity matrix defined by 
the dependence of each process in the metabolic network on 
the intermediates (e.g., ions or metabolites) included in the 
model. The elasticity matrix is quantified through the 
derivatives of the rates of individual processes with respect 
to each possible effector 

By applying matrix algebra, the corresponding control 
and response coefficients matrices are obtained. The 
regulation and control in the network is quantified by both 
kinds of matrices. The regulation exerted by internal or 
external effectors to a network can be quantified by the 
response coefficient [4].  

The following matrix relationships were used in the 
computation of flux and metabolite concentration control 
coefficients 

( ) 1−= r x r xC  Id  - D v L N  D v L  Nr

r

  (3) 

( ) 1−Γ = r x - L N  D v L  N         (4) 

with C and Γ referring to the flux- and metabolite 
concentration control coefficients, respectively; Idr, the 
identity matrix of dimension r, or the number of processes in 
the network under study. Dxv the elasticity matrix; Nr the 
reduced stoichiometric matrix and L, the link matrix that 
relates the reduced- to the full-stoichiometric matrix of the 
system (for further details see [8]). 

III. RESULTS AND DISCUSSION 
Figure 1 displays the network of biochemical processes 

accounted for by the mitochondrial energetics (ME) model. 
The ME model consists of 11 state variables computed by a 
system of 11 ordinary differential equation (ODEs). For 
control analysis the ODEs were integrated until a steady 
state was achieved and then the elasticities were calculated, 
i.e. the rate expression of the corresponding process was 
derived with respect to the effector under study. In the case 

of the TCA cycle, a single step in the stoichiometric matrix 
was considered; however, for the quantification of the 
elasticity coefficients of the TCA cycle with respect to the 
intermediates, the disaggregated individual rate expressions 
and their dependence with respect to effectors were taken 
into account. The individual elasticities were then added 
together to compute the overall elasticity of the TCA cycle. 

 

 
 

Figure 1. The scheme shows mass transformation interactions 
between the state variables of the ME model. In the model the TCA 
cycle (number 1) starts from AcCoA. Number 2 stands for the 
respiratory electron transport, 3, for proton (H+) pumping in 
respiration, 4, succinate-driven H+ pumping, 5 ATP synthase, 6, H+ 
pumping by ATP synthase, 7 H+ leak, 8 adenine nucleotide 
translocator, 9, Ca2+ uniporter, and 10, mitochondrial Na+ Ca2+ 
exchanger. State variables are indicated in rectangular (ion or 
metabolites) while boxes depict a light grey background when the 
state variables participate in conservation relationships (ATP/ADP, 
NAD+/NADH) or a dark grey background for ionic species. ΔΨm 
corresponds to the mitochondrial membrane potential. Arrowheads 
point to the products of the numbered processes, whereas lines 
without arrowheads indicate inputs to those processes.  
 
Figure 2 shows the control profile of the rate of 

respiration, VO2, and the F0,F1 ATP synthase by different 
mitochondrial processes,. VO2 is mainly controlled by the 
activity of the respiratory chain carriers (VRC), the H+ fluxes 
associated with respiratory electron transport (VHNe) and 
ATP synthesis (VHu) (Figure 2A; see also [9]). By 
discriminating between VHNe and VHu, we show that 
mitochondrial respiration is negatively controlled by the 
build-up of ΔΨm (via VHNe), and positively controlled by the 
flux of H+ associated with ATP synthesis. Additionally, VO2 
is significantly and positively controlled by the Ca2+ 
uniporter (VCauni) and the adenine nucleotide translocator 
(VANT) (Figure 2A). Minor positive control of respiration is 
contributed by the TCA cycle (VTCA) and the proton leak 
(Vleak), while negative control is exerted by the proton flux 
associated with succinate-driven respiration (VHFe) and the 
ATP synthase (VATPsy) (Figure 2A). 

The ATP synthase control profile mirrors that of 
respiration, with the exception of VANT and the TCA cycle 
(VTCA). For instance, VRC and VHNe exert negative and 
positive control, respectively, on VATPsy (Figure 2A and 2B). 
The positive control displayed by the ANT on VATPsy is due 
to the transport of ADP, the substrate for ATP synthesis, to 
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mitochondria (Figure 2B), whereas in the case of respiration, 
the ANT exhibits positive control by dissipating ΔΨm, 
thereby accelerating respiration (Figure 2A). 

The results above show that the control of energetics in 
isolated mitochondria and, more specifically, of respiratory 
and ATP synthesis fluxes, is distributed. Control is shared by 
processes associated with adenine nucleotide synthesis and 
transport, as well as by Ca2+ dynamics. 
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Figure 2. Control of metabolic fluxes in the mitochondrial energetics 
model. VO2 stands for respiratory electron transport (from NADH to 
O2) whereas VHNe represents the respiratory proton translocation 
associated to VO2. VHFe represents the rate of proton translocation 
associated with succinate-driven respiration. Panel A displays the 
control profile of electron transport, panel B, the control of the ATP 
synthase and panel C, the ΔΨm control coefficients by each of the steps 
of the ME model [4] 
 
The concept of control by diffuse loops emerged from 

studies attempting to visualize the structure of control of 
metabolic and transport networks of the myocyte as a whole 
[8]. We defined control by diffuse loops as the control 
exerted by a process A over another, e.g., C (mechanistically 
unrelated or indirectly related to process A) through at least 
one intermediate process B. We pointed out that the 
existence of diffuse loops provides a rationale for 
understanding that an action on one part of the network (e.g. 
by a pharmacological agent) may bring about changes in 
other parts without obvious direct mechanistic links between 
them. 

Mitochondria also exhibit control by diffuse loops. The 
control exerted by some mitochondrial processes on the flux 
of ATP synthesis (Figure 1) can be readily interpreted based 
on first principles. Discriminating between the proton fluxes 

associated with respiratory electron transport (VHNe and 
VHFe), and ATP synthesis (VHu) we show that ATP synthesis 
is positively controlled by the buildup of the proton motive 
force, pmf (VHNe and VHFe), and negatively controlled by the 
flux of H+ associated with ATP synthesis. The results 
indicate that when the pmf is built up by VHNe, it feeds back 
positively on the ATPase (i.e., higher ΔΨm, higher ATPase 
activity) whereas when the pmf is dissipated (mainly 
through ΔΨm), the ATPase activity decreases. In the ME 
model, VO2 and VATPsy depend upon both ΔΨm and ΔpH [9]. 
The overall fluxes of respiration [8] and ATP synthesis 
(Figure 2A) are strongly dependent on ΔΨm within a certain 
range, and follow the general flux-force relationship and 
dependence upon ΔΨm and ΔpH described for numerous 
biological free-energy transduction processes [9-11]. These 
effects explain the diffuse loop acting as a negative control 
exerted by the Ca2+ uniporter, VCaUni, on ATP synthesis 
(Figure 2A). The latter control is mediated by ΔΨm 
dissipation due to the electrogenic uptake of Ca2+ through 
the uniporter [9]. This ΔΨm–mediated diffuse loop can be 
further clarified if we take into account the dual effect of 
Ca2+ transport; which on the one hand activates the TCA 
cycle dehydrogenases thereby stimulating NADH production 
and respiration, and on the other hand, dissipates ΔΨm 
because of the inward transport of positive charges. 
Quantitatively, the negative control by VCaUni on ATP 
synthesis happens because ΔΨm dissipation is larger than the 
Ca2+-mediated TCA cycle activation. 
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When the ME model was integrated with the model of 
excitation-contraction coupling (ECME model) 
encompassing mechanical activity as well, the pattern of 
control was found to vary according to working or resting 
conditions, when the contractile force is close to its 
maximum, and the energy-consuming pumps are nearly at 
maximal work during the contraction cycle [8]. The 
calculations with the ECME model were performed under 
resting and working conditions, when the contractile force is 
close to its maximum, and the energy-consuming pumps are 
nearly at maximal work during the contraction cycle. 
Although this procedure is rather artificial for a continuous 
beating heart, this is precisely the usefulness and advantage 
of a computational model; i.e. it allows you to gain insights 
into complex processes. Under working conditions, 
additional control of respiration is exerted by cytoplasmic 
and sarcolemmal processes, e.g. the myofibrillar and Na/K 
ATPases. This is especially true under working conditions, 
when the interaction between cytoplasmic and mitochondrial 
processes is quantitatively more important. A conspicuous 
example is the control over respiration exerted by the 
myofibrillar ATPase, whose degree of share of control 
appears to be significant only during working conditions. 
This result underscores the demand-led control of 
mitochondrial respiration when the energy supply is 
maximally required. 

Uncovering the existence of control by diffuse loops 
throws new light into the understanding of secondary effects 
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of pharmacological agents. Profound insights into the 
rational design of new therapeutic approaches are coming 
from the utilization of quantitative computational tools to 
calculate the basic control and regulatory properties of 
extended networks.  

The quantitative tools described herein when applied to 
computational models or experimental systems will enable a 
more comprehensive and deeper understanding of the 
interactions between different processes in a network. 
Additionally, it helps to gain a quantitative insight into 
complex processes and their counter-intuitive effects, such 
as those produced by diffuse loops. Extensive data reported 
in the literature and our calculations indicate that, in the 
heart, control by diffuse loops is conspicuously present [12]. 
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