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Abstract

Stress tests are typical protocols that exhibit T
waves changes for healthy and ischemic subjects. ST-
T elevation is one example among others that charac-
terizes ischemic patient. A more complex description of
T wave changes needs extended models with a cost of
higher identification pitfalls. We propose here to work
in the inverse normalized integrals domain. This do-
main permits us an estimation of all pertinent parame-
ters for the characterization of T waves shape. These
parameters stand for the delay, the width (defined in
the paper as the scaling factor) and the offset. In con-
trast, direct application of PCA on the data (defined in
the paper as time-domain approach) assumes perfectly
aligned waves with identical widths. Time-varying pa-
rameters values corresponding to exercise tests are esti-
mated by using both approaches. It is shown that results
are consistent with clinical knowledge.

1. Introduction

It as been shown in [1] that T waves from the ECG
can be characterized by a set of parameters that can be
estimated in the normalized integral domain. Each ob-
servation, indexed by i, of the T waves set has been
modeled as:

xi(t) = kis(αit−di)+ni(t) with αi > 0;ki > 0 (1)

, with ki, αi, di the amplitude coefficient, the scaling fac-
tor and the delay or shift, respectively. s(t) is assumed
to be a deterministic unknown signal and the noise n(t)
will be omitted in the following for the sake of clar-
ity. In practice, the estimation is unbiased under the
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assumption that the waves are correctly segmented. Un-
fortunately, a procedure that guarantees this perfect seg-
mentation doesn’t exist because the wave of interest is
not fully described and may vary from beat to beat. Ad-
ditionally, this model can be extended by introducing an
offset in (1). We propose here to address the problem of
segmentation and offset estimation in the same domain
than in [1]. The relevance of this extended model and
the proposed solution is demonstrated by characteriz-
ing the T waves of one patient with ischemia and one
healthy volunteer, during exercise test carried out on er-
gometer.

2. Mathematical developments

When using model (1) and omitting the noise, the
normalized integral of s(t) and xi(t) are computed by :

S(t) =
(∫ t

0
s(u)du

)
/

(∫ T

0
s(u)du

)
(2)

Xi(t) =
(∫ t

0
xi(u)du

)
/

(∫ T

0
xi(u)du

)
(3)

These functions are strictly increasing assuming the
positivity of the observations. This assumption is easily
verified when recording T waves with the proper leads.
From (1), xi(t) is related to s(t) by the application of an
increasing affine function called ϕi, that implies:

Xi = S◦ϕi⇔ Xi(t) = S(ϕi(t)) with 0≤ t ≤ T (4)

The functions S and Xi being increasing, for any value
of t we get:

y = S(t) = Xi(ti)⇔ t = S−1(y) with ti = ψi(t) (5)

According to (1), we have the relation:

ti =
S−1(y)

αi
+

di

αi
(6)

When the y axis is sampled with a sampling pe-
riod δy, the values of ti that correspond in the con-
tinuous case to ti = X−1

i (y) are gathered in a vector
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ti = [X−1
i (0) X−1

i (δy) · · ·X−1
i (1)]. Using the vector for-

mulation relation (6) is replaced by:

ti = aiv+bi1I =
1
αi

t+
di

αi
1I (7)

where t and 1I stand for the sampled S−1(y) that is
unknown but common to all observations and the unit
vector, respectively. Considering all the observations,
not only the set of parameters (ai,bi) has to be estimated
but also vector t. In order to solve this problem we pro-
pose to decorrelate the estimation of the ai’s and bi’s
by imposing orthogonality of t and 1I. This is simply
achieved by zeroing the mean of each ti. This leads to
a two stage estimation: estimation of the ai’s and t fol-
lowed by the estimation of the bi’s.

Using the entire set of observations, the first esti-
mation solves the minimization:

ť = arg min
t
(∑

i
‖ti−ait‖2) (8)

with theoretically unique ai’s. Imposing the constraint
tT t = 1 leads to the equivalent problem:

ť = arg max
t

tT Rt (9)

where R stand for the correlation matrix of the ob-
servations ti’s. The solution is given by the eigenvector
decomposition of the matrix R where the estimation ť
corresponds to the first eigenvector. In order to derive
this decomposition as an equivalent Principal Compo-
nent Analysis, a matrix T is defined as T = [t1 · · · tN ]
and the PCA is computed such that T = VΣU′. The first
column of V is thus the normalized ť.

The solution in (8) is equivalent to a weighted av-
eraging when the model (1) is relevant. When it is
no longer appropriate this analysis provides us with a
global description of the mutual information shared by
the ti’s with the property that the first column of V,
namely v1, plays the role of the mean shape. Let us
recall that the transformation that is under the scope of
this paper is an affine function applied to the time axis
of a reference shape. In other words, we model each
realization of the random process (1) as a shifted and
scaled in time version of a reference shape. The model
corresponding to (8) doesn’t exhibit the time shift but
the scaling factor. It means that the information related
to this parameter will be shared by all the eigenvectors
from the PCA. The vector θ i corresponding to the time
scale and shift coefficients for the realization i is esti-
mated by using a least square minimization whose so-
lution is given by:

θ̂ i = [v11I]#ti (10)

The first and second components of θ̂ i will correspond
to the scaling and shift parameters, respectively. The
scale and delays parameters refer to a virtual vector and
not to a given observation from the dataset, the first for
instance. How to relate any ti to t1 assuming the affine
(6)? From (10), we have the relation t1 = a1v1 + b11I
and thanks to the property of the model formulated in
the inverse normalized integral we have ti =

1
αi

t1 +
di
αi

1I
but also ti = aiv1 +bi1I. By using appropriate substitu-
tion in these expression, we get:

αi =
a1

ai
(11)

di = αibi−b1 (12)

Then, scale and delay parameters estimated by using
(10) can be transformed in order to refer to the first ob-
servation. This transformation allows to track the con-
tinuous effect, increasing exercise for instance, of the
experiment onto the signals under the scope with re-
spect to causality. This estimation relies on a correct
initial wave segmentation. Unfortunately it is unlikely
to record ECG containing waves that fulfill conditions
for a good estimation. The use of the normalized in-
tegral assumes that waves vanish on the bounds of the
segmentation window. We suggest to adapt the segmen-
tation location to the criteria that is being minimized
in (8). The objective is to find the best location of
the window to reduce the number of significant vec-
tors in V that explain the entire set of data. In other
words, each observation xi(t) is transformed such that
x̃i(t) = xi(t + deci + I), where deci corresponds to the
adjustment delay. This adjustment is estimated by max-
imizing the criteria λ 2

1 /∑i λ 2
i . The λi’s correspond to

the singular values sorted in descending order computed
with the matrix T obtained with the transformed obser-
vations. When the model (1) is verified for all segments,
and omitting the noise, the criteria should be equal to
one since only the first singular value is different than
zero.

Using the proposed estimation of the ai’s and bi’s
and the relations (11), (12), the observations x̃i(t) can be
referred to x̃1(t) using the relation x̃i(t) = x̃1(αit− di).
The difficulty that has to be solved is to return to the
original observations xi using the previous develop-
ment. In summary, we have at disposal the two rela-
tions: {

x̃i(t) = xi(t +deci + I)
x̃i(t) = x̃1(αit−di)

Using these relations we get xi(t +dec1 + I) = x1(αit−
di + dec1 + I). Comparing this relation with xi(t) =
x1(γit−βi), we finally get:{

γi = αi
βi = αideci +di−dec1− (1−αi)I
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An additional difficulty is related to the baseline
wander exhibited in any stress test records. Albeit
a high-pass filtering is applied to the ECG records,
a residual component still reduces the estimation per-
formance by increasing the bias.The proposed solu-
tion consists in adding a varying offset such that the
minimum value in the segmentation window is main-
tained greater than zero during the minimization of
J = λ 2

1 /∑i λ 2
i . In summary, the global minimization

problem is solved by using a combination of an alter-
nated least square with an iterative approach such in [5].
The first step consists in iteratively minimizing J with
a grid search for each observation, with respect to the
offset. The second step deals with the adjustment de-
lays deci by using an equivalent scheme. This process
is repeated until convergence.

An alternative to the inverse normalized integral is
to process the data in the time domain by using simi-
lar approach. In contrast to the use of the normalized
integral, conventional PCA applied in the time domain
relies on the perfect alignment of signals in addition to
a constant scaling factor. Furthermore it is not affected
by the addition of a variable offset by using a correct
modeling. Since a time delay is expected during the
stress test protocol, a grid search will be introduced dur-
ing the minimization of the criteria similar to J. This
corresponds to an extension of an usual approach when
faced with such observations. The presence of a proba-
ble scaling factor is not addressed in the time domain
because it needs interpolation unlike the inverse nor-
malized integrals where this parameter appears linearly
in the model.

3. Application

The ECG signals were measured at rest and dur-
ing an exercise test carried out on ergometer. The 67-
channel high-resolution ECG measurement system was
used. Leads were located according to the University of
Amsterdam lead system [2],[3]. ECG signals were ac-
quired with 4096 Hz sampling frequency, and digitized
at 24-bit resolution [4]. ECG signal from precordial
lead V5 was used in this study. The multi-stage protocol
was used. After obtaining 10 minutes of ECG recorded
at rest, patients started to pedal at constant speed with
load of 50 W which was increased by 25 W every 2
minutes. Tests were terminated in case of chest pain,
fatigue, arrhythmias, or marked ST-T segment change.
A test was considered negative only when the 85% of
predicted maximum heart rate was achieved by patient
and there was no distinct positive ST-T changes. One
patient with ischemia and one healthy volunteer with no
history of cardiovascular disease were analyzed. In or-

der to reduce the influence of the baseline wander, each
R-R interval has been corrected such that the silent in-
terval (P-Q) is zeroed. For this analysis, an ensemble of
500 consecutive beats during the exercise are recorded
and one T wave out of every ten is considered in order to
reduce the amount of data to process. Thus, 50 T waves
coarsely pre-segmented with respect to the R wave lo-
cation are processed for each subject. The R-R intervals
are given in fig. 1. Comparing fig. 2 and fig. 5, we can
notice that the estimations of the delays are similar for
both approaches but different for the two subjects. It is
expected that during exercise, QT intervals of healthy
subject decrease while ischemic patient exhibits the in-
verse trend. The trends of the offsets plotted in fig. 6
correspond to the ST-T elevation expected for ischemic
subject while the healthy one doesn’t exhibit any partic-
ular trends (see fig. 3). In contrast to the healthy case,
the ischemic subject presents a scaling factor in fig. 7
corresponding to a widening of the T waves as long as
the exercise increases. Because ground truth is lacking
it is difficult to consider the accuracy of such results.
However, the proposed method being time-scale invari-
ant unlike the time-domain approach, we assume that
the offset in fig. 6 (thick line) corresponds to the typical
ST-T elevation for ischemic subjects.
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Figure 1. R-R intervals of the healthy (thick line)
and ischemic (thin) subjects

4. CONCLUSIONS

The model of T wave observations has been ex-
tended in order to account for physiological elevation.
While this model is more complete, the segmentation is-
sue still remains because of the variability of the T wave
shape. We have proposed a global procedure that esti-
mates the parameters of interest with respect to clinical
expectations. Examples on healthy and ischemic sub-
ject show that conventional approaches that works in
the time domain can be replaced by the proposed one,
at least because it provides an additional parameter that
is the scaling factor.

4703



0 50 100 150 200 250 300 350 400 450 500
−80

−70

−60

−50

−40

−30

−20

−10

0

beat number

de
la

y 
(m

s)

Figure 2. Estimated delays of the healthy subject
using time domain (thin line) and inverse normalized
integrals (thick line)
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Figure 3. Estimated offset of the healthy subject
using time domain (thin line) and inverse normalized
integrals (thick line)
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Figure 4. Estimated scaling factor of the healthy
subject using inverse normalized integrals
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Figure 5. Estimated delays of the ischemic subject
using time domain (thin line) and inverse normalized
integrals (thick line)
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Figure 6. Estimated offset of the ischemic subject
using time domain (thin line) and inverse normalized
integrals (thick line)
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Figure 7. Estimated scaling factor of the ischemic
subject using inverse normalized integrals
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