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Abstract— Accurate quantification of loss of response to
external stimuli is essential for understanding the mechanisms
of loss of consciousness under general anesthesia. We present a
new approach for quantifying three possible outcomes that are
encountered in behavioral experiments during general anesthe-
sia: correct responses, incorrect responses and no response. We
use a state-space model with two state variables representing a
probability of response and a conditional probability of correct
response. We show applications of this approach to an example
of responses to auditory stimuli at varying levels of propofol
anesthesia ranging from light sedation to deep anesthesia in
human subjects. The posterior probability densities of model
parameters and the response probability are computed within
a Bayesian framework using Markov Chain Monte Carlo
methods.

I. INTRODUCTION

A fundamental problem in neuroscience and medicine is

understanding the mechanisms of general anesthesia. Loss

of consciousness under general anesthesia is measured clin-

ically by observing the loss of response to external stimuli.

Characterizing the neurophysiological correlates of general

anesthesia requires a precise quantification of when subjects

lose or regain the ability to respond to these stimuli. By

doing so, it may be possible to identify specific neural

signatures that characterize the transitions in and out of

consciousness. In our study, human subjects were asked

to discriminate between two types of auditory stimuli by

pressing one of two buttons. When subjects are conscious

and responding to stimuli, the responses can be either correct

or incorrect. However, as the anesthetic dose increases, we

expect the responses to become less likely, with possible

changes in the rate of correct or incorrect responses. A

standard method is to estimate the response rate at a given

point in time by grouping together correct and incorrect
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responses into one category, and treating the absence of

response as a second category [1], [2], [3], [4]. However,

if we treat incorrect responses as a separate category, we

can quantify both the response rate and the probability of

correct responses simultaneously. We assume that responding

to a stimulus and responding correctly to a stimulus are

two slightly different phenomena, because to anticipate the

latter one, additional brain coordination including hearing,

understanding and sending alternative signals to different

muscles may be required. Performing such quantification re-

quires a more sophisticated model of response dependencies

and their dynamics. In this contribution we present a new

approach for quantifying the probability of correct, incorrect,

and no response. We do this by treating the probability

of response and the conditional probability of a correct

response given a response as hidden states governed by a

dynamic model that is linked to the observations by a logit

transform. Physiologically these hidden states indicate level

of consciousness, based on both the ability to respond and

the performance of the subject under general anesthesia.

The posterior probability densities of model parameters and

hidden states (response probabilities) are computed within a

Bayesian framework using Markov Chain Monte Carlo meth-

ods. Once these probabilities are estimated, the probability

of a correct response can be calculated using Bayes rule.

II. EXPERIMENTAL PROTOCOL

We induced and allowed recovery from general anesthesia

in a normal healthy human volunteer. We conducted these

studies with the approval of the Human Research Committee

at the Massachusetts General Hospital, and followed all hos-

pital safety regulations for administration of general anesthe-

sia. For the anesthetic induction, we increased the effect-site

concentration in step-wise levels of 0, 1, 2, 3, 4, and 5µg/ml
every 14 minutes using a computer controlled infusion [5],

[6]. The subject listened to a series of pre-recorded auditory

stimuli consisting of their name, affectively-neutral words,

or a train of 40 and 84 Hz clicks, presented in a ratio of

1 word/name to 4 clicks. Subjects were instructed to press

a button to differentiate between these sounds, and were

asked to wait until the end of the click stimulus before

responding to those stimuli. The duration of the names/words

stimulus was approximately 0.5 seconds, the click stimulus

duration was 2 seconds, and the inter-stimulus interval was

4 seconds. We used the loss of button responses as an
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indicator of loss of consciousness (LOC). We referred to the

propofol concentration where the subject lost consciousness

as CLOC. We then reduced the propofol concentration in a

stepwise fashion to concentrations of CLOC − 0.5µg/ml,
CLOC − 1.0µg/ml, and CLOC − 1.5µg/ml, and 0µg/ml,
for 14 minutes each. Button press times were recorded

throughout the experiment. The whole experiment spanned

about 150 minutes.

III. MODEL

Let K be the number of trials in an experiment. For k =
1, . . . ,K, let nk be 1 if the subject responds to the trial k
and 0 otherwise. Let also mk be 1 if the subject responds

correctly to the trial k and 0 otherwise.
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Let pk be a 2 × 1 observation vector, with elements pn
k

and p
m|n
k

, representing the probability of a response and

the conditional probability of a correct response given a

response on trial k, respectively. Let also 2 × 1 vector xk,

with elements xn

k
and x

m|n
k

, be the cognitive state on trial k.

Since our data are approximately equally spaced, we assume

that xk depends on xk−1 through a random walk model (1),

containing a dynamical noise term with a constant variance.

We also assume that pk follows from xk through a logistic

transformation (2), ensuring that pk is constrained to lie

between zero and one. This yields the following model:
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Equations (1) and (2) form a state-space model, where (1)

is the system equation and (2) is the observation equation.

Let ǫn
k

and ǫ
m|n
k

be Gaussian distributed dynamical noise

terms for the system equation, i.e., ǫn
k

∼ N
(
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)
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ǫ
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∼ N
(
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. To simplify the problem, we assume

that the observations in (2) are noiseless. Given initial values

of cognitive states (xn
0 and x

m|n
0 ) and the system noise

variances (σ2
n

and σ0
m|n ), the likelihood function of the free

parameters is:
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In our experiment, every five consecutive stimuli contain

four click train stimuli and one verbal stimuli, in a repeating

pattern of click-click-verbal-click-click. Instead of analyzing

the click train stimuli individually, we pooled every four

click train stimuli, so that the number of data point are

equal for the two stimulus types. By this, we can combine

two uncoupled models into a combined model, for instance,

models B and C in Fig. 3. The trinomial distribution on

multiple trials was adopted:
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where Nk (Mk) is the number of trials in block k during

which the subject responded (responded correctly), K is the

number of blocks, and L = 4 is the number of trials in a

block. Note that (3) is a particular case of (4) when L =
1. We can use either (3) or (4) with the state-space model

((1) and (2)) that can be modified by adding state variables

to accommodate different types of stimuli or differences in

response rate between different stimuli with the same model

structure.

The set of free parameters includes all the x0 and all

the σ2. These are computed using the Bayesian approach,

which assumes that prior information about the parameters

improves the parameter estimates. For all the x0 we choose

uniform prior distribution, Uniform (a, b), while for all the

σ2, we choose the conjugate inverse gamma prior distribu-

tion, Inverse Gamma (α, λ). We assumed values of 0 and 100
for a and b respectively to reflect the fact that the subject

responded perfectly at the beginning of the experiment. α
and λ are chosen to be 5 and 1, making the inverse gamma

prior distribution non-informative.

We use the Bayesian analysis implementation described

in [3], which uses BUGS software and provides an efficient

way of estimating parameters without having to develop

a new algorithm for each model. The BUGS software is

available for free in two implementations, WinBUGS [7] and

OpenBUGS [8]. The median and credible interval estimates

of probability are obtained from 100000 iterations after a

20000 iteration burn-in period. It takes less than 1 hour to

perform the Gibbs sampling for one set of data.

IV. RESULTS

In Fig. 1 we show the anesthetic propofol concentration

level and the behavioral data over time. As we can see

in Fig. 1, the subject started to respond incorrectly, and at

the same time the response time became non-uniform. The
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Fig. 1. Propofol concentration level in µg/ml (blue) and behavioral responses of click train stimuli (green) and verbal stimuli (purple). Height of stems
represent reaction time of responses in sec. A response is denoted by a stem. An incorrect response is denoted by a stem with a cross at the tip.

Fig. 2. Model A. Median estimates and 95% credible interval estimates
of (1st panel) probability of response, (2nd panel) conditional probability
of correct response and (3rd panel) probability of correct response of click
train stimuli (green) and verbal stimuli (purple). Difference in probability
(4th to 6th panel) between the click stimulus and the verbal stimulus, under
the same model.

subject stopped responding to auditory stimuli during the

fourth segment when the propofol concentration level was

3µg/ml, which corresponds to CLOC. After four segments

of not responding, the subject started to respond again after

the anesthetic propofol level was lowered to 2µg/ml. In both

Fig. 2 and Fig. 3 we indicate the median estimate with a solid

line and the interval estimate with a shaded area. Using the

Gibbs sampling algorithm we collected a set of estimates,

one estimate from each iterative step. Then we sorted all

the estimates in the ascending order, taking the middle value

as the median estimate, and the 2.5% percentile and 97.5%

percentile as a 95% credible interval.

In Fig. 2 we show the results of Model A, in which

we assume that the verbal and click stimuli each have a

distinct probability of response and conditional probability of

correct response. This is done by augmenting the state and

observation equations so that the verbal and click stimuli

each have their own state equation (1) and observation

equation (2). In the three upper panels of Fig. 2, we show the

probability of response, the conditional probability of correct

response given a response, and the probability of correct

response. We are therefore able to compare simultaneously

both the response rate and the correct response rate between

the two types of auditory stimuli, which would not be

possible with conventional binary models. We see that the

subject responded more persistently to more salient verbal

stimuli than less-salient click train stimuli. We find that

the conditional probability (2nd panel) has a wider credible

interval, covering almost all of the range 0 to 1 whenever

the response rate was small, since responses were infrequent

during that time. In the three lower panels of Fig. 2, we

compare performance between verbal and click stimuli by

computing the difference in probability between stimulus

types. The 4th panel shows the difference in probability of

response, the 5th panel shows the difference in conditional

probability of correct response, and the 6th panel shows

the difference in total probability of correct response. The

solid line represents the median difference and the pale area

represents a 95% credible interval. The credible interval

above the horizontal zero means that the probability of

verbal stimuli is significantly larger than that of click train

stimuli. During the transition to loss of consciousness, when

the response rate drops from 1 to 0, and the recovery of

consciousness, when the response rate rises back to 1, we

observe periods of significant differences between verbal and

click stimuli in terms of response rate (4th panel) and correct

responses (6th panel). During the unconscious period, the

difference in conditional probability of correct response has

a very wide credible interval (5th panel). This is because

there are vanishingly few observations during this time, so

the estimation power is very low.

In Fig. 3, we illustrate how these models can be used

to represent different possible dependencies within the data,

and how the model comparison method can be used to

perform model selection. We consider two additional model
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Fig. 3. Median estimates and 95% credible interval estimates of probability
of response, conditional probability of correct response and probability of
correct response of click train stimuli (green) and verbal stimuli (purple),
with the assumption of (Model B, 1st to 3rd panel) a common probability
of response (blue) or (Model C, 4th to 6th panel) a common conditional
probability of correct response (blue).

structures. For one model, we assume that the two stimulus

types have the same underlying probability of response, but

different probabilities of correctness (Model B). For another

model, we assume that the two stimulus types share the

same underlying conditional probability of correct response,

but have different probabilities of response, and different

probabilities of correct response (Model C). In Model B, the

common response rate (Fig. 3, 1st panel) apparently takes the

shape from click train stimuli in Model A (Fig. 2, 1st panel).

Its values lie in the intermediate range between the verbal and

click response rates, and the credible interval is narrower. The

correct response rate (Fig. 3, 3rd panel) of click train stimuli

is consistent with that in Model A, but the correct response

rate for the verbal stimuli is not because it is bounded by the

overall response rate (Fig. 3, 1st panel), forcing it to assume

a shape that is very similar to the click train correct response.

For Model C, the response rate (Fig. 3, 4th panel) is similar to

what we saw in Model A (Fig. 2, 1st panel). The probability

of correct response (Fig. 3, 6th panel) is also similar to

Model A (Fig. 2, 3rd panel), but with a reduced probability of

correct response for the verbal stimuli. This happens because

the combined conditional probability of correct response in

Model C (Fig. 3, 5th panel) is less than that for the verbal

stimuli in Model A (Fig. 2, 2nd panel). We performed model

selection using Deviance Information Criterion (DIC), which

is a measure given by the sum of deviance and twice the

number of effective parameters. The model with the smallest

DIC is estimated to be the model that would best predict a

replicate dataset which has the same structure as the currently

observed. The DIC of the models A, B, and C are 677.9,

863.7 and 675.7, respectively. This indicates that the model

with two distinct response rates and one common conditional

correct response rate is the most feasible, which implies that

the subject had a consistent accuracy in responding to the two

types of stimuli but also being more persistent in responding

to verbal stimuli. Model A had a very comparable DIC value,

and produced very similar results in terms of the performance

differences between verbal and click stimuli.

V. DISCUSSION

We have presented a Bayesian dynamical model for quan-

tifying probability of response and probability of correct

response simultaneously. We have applied it to trinary be-

havioral data from ten human subjects undergoing general

anesthesia. Due to space limit we presented here only be-

havioral results of one subject. Results with other indicators

of the state of consciousness can be found in [9] and [10].

Our method can be extended to a more general case of data

with more than three categories. This can be easily achieved

with additional cognitive states of conditional probability. In

additional to anesthesia studies, our method is applicable to

other studies such as sleep studies or learning studies, in both

animals and humans.
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