
  

 

Abstract—The fine architecture of sleep-wake behavior 

shows a distinct dynamic structure with distributions of rat 

sleep and wake bout durations displaying qualitatively different 

profiles.  Wake bout durations follow a power-law relation 

whereas sleep bout durations are exponentially distributed.  We 

show that a physiologically-based sleep-wake regulatory 

network model with an underlying deterministic structure 

governing neuronal interactions can generate realistic rat sleep-

wake behavior as assessed by both standard summary statistics 

and survival analysis of bout distributions.  Obtaining 

appropriate bout duration distributions depended on stochastic 

elements included in the model, the existence of multiple 

mechanisms for state transitions, and specific relationships 

among time constants governing state maintenance.  This 

model provides a novel framework for exploring the 

disruptions of sleep-wake architecture associated with 

pharmacological, genetic, and disease states.  

I. INTRODUCTION 

ECENT studies quantifying the effects of specific 

genetic, developmental, and disease states on sleep-

wake behavior have highlighted the inadequacy of  standard 

metrics for sleep characteristics, such as percent time spent 

in wake and sleep states, mean duration of wake and sleep 

bouts, and the number of bouts, for differentiating 

experimental conditions or correlating with behavioral 

measures [1-5].   For example, such standard metrics can 

only weakly quantify state fragmentation which is the 

primary sleep pathology in disorders such as sleep apnea and 

narcolepsy [6, 7].   

Survival analysis of state bout durations has emerged as a 

higher-order metric of sleep patterning that can better 

distinguish experimental conditions and disease states.  

Early approaches using survival analysis identified key 

qualitative differences in the distributions of wake and sleep 

bout durations:  wake bout durations were governed by 

power-law behavior (proportional to t-α) while sleep bout 

durations were exponentially distributed [8].  Furthermore, 

these features were shown to persist across species [9], 

though they may be altered in the presence of disease or 

genetic mutation [2, 4, 5, 10].  Recent work has suggested 

that a multi-exponential distribution may accurately capture 

the power-law-like features of the wake bout distribution 

[11], but the qualitative difference between wake and sleep 
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bout distributions remains clear. 

Although stochastic models have captured the appropriate 

temporal architecture of wake and sleep bout durations, it is 

difficult to link stochastic models to underlying physiology 

[8, 12].  By contrast, physiologically-based mathematical 

models of the interactions among sleep-wake regulatory 

neuronal populations in the brainstem and hypothalamus 

provide a theoretical framework in which to examine 

proposed neuronal mechanisms of sleep-wake regulation as 

well as to investigate disruption of these mechanisms as 

occurs in sleep disorders [13-17]. However, underlying 

dynamics in these models are based on deterministic 

interactions among the participating neuronal populations 

that are reflected in the resulting distributions of wake and 

sleep bout durations. Therefore, even when these models 

reproduced standard summary statistics, the fine architecture 

of simulated sleep-wake behavior failed to realistically 

simulate the distributions of sleep and wake states.  Hence, 

the question arises whether an inherently deterministic 

model can simulate a dynamic architecture displaying 

characteristics of an inherently stochastic system.  

To investigate this question, we simulate realistic rat 

sleep-wake behavior in a physiologically-based model of the 

sleep-wake regulatory network.  Deconstruction of this 

modeling framework allowed analysis of the source of 

power-law-like and exponential distributions of wake and 

sleep bout durations, respectively, and provided insights into 

the key generative mechanisms of the temporal architecture 

of sleep-wake behavior.  

II. METHODS 

A. Modeling the sleep-wake regulatory network 

The structure of the model sleep-wake regulatory network 

was based on experimental characterization of the relevant 

anatomy and physiology (see [18] for review) and has been 

described previously [14]. The model network includes 

wake-active, wake- and rapid eye movement (REM) sleep-

active, REM sleep-active, and non-REM (NREM) sleep-

active neuronal populations and the neurotransmitters they 

express (Fig 1).  

The dynamic interactions between neuronal populations 

were modeled using a firing rate model formalism that 

explicitly includes both population firing rates and the 

concentrations of neurotransmitter released by associated 

presynaptic populations [14]. Briefly, firing rates of neuronal 

populations depend on the concentrations of 

neurotransmitters released by presynaptic populations and 

evolve dynamically to sigmoidal steady state functions.  

Neurotransmitter concentrations depend on the firing rate of 

the associated presynaptic population and evolve to a 

saturating steady state release function. A simulated 
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Figure 1: Schematic of model sleep-wake regulatory network showing 

connectivity among wake- (light gray, locus coeruleus (LC), dorsal 

raphe (DR)); NREM sleep- (black, ventrolateral preoptic area (VLPO)); 

and REM sleep-, and wake- and REM sleep- (gray, subpopulations of 

the laterodorsal tegmental nucleus and the pedunculopontine tegmental 

nucleus (LDT/PPT)) promoting neuronal populations and their 

associated neurotransmitters (noradrenaline (NE), serotonin (5-HT), 

GABA and acetylcholine (ACh), respectively).  Large filled arrows 

indicate neurotransmitter expression by neuronal populations, lines 

ending in small arrows (circles) indicate excitatory (inhibitory) post-

synaptic effects of neurotransmitters, and open striped arrows indicate 

external excitatory input. The homeostatic sleep drive (triangle) acts on 
the NREM-promoting VLPO. 

homeostatic sleep drive h(t), based on the characteristics of 

the neuromodulator adenosine, increases during wake and 

decreases during sleep, modulating the activity of the 

NREM-promoting population VLPO to induce transitions 

between wake and NREM sleep states. 

                    
 

 

 

 

 

 

 

 

 

 

B. Stochastic elements in the deterministic model 

We identified three key physiological sources of 

variability to include in our sleep-wake network model: (1) 

variability in neurotransmitter release, modeled by scaling 

steady state  neurotransmitter release functions by noise 

factors;  (2) variability in the level of the homeostatic sleep 

drive, modeled by replacing the maximum and minimum 

thresholds of h(t) with normally distributed random numbers 

(mean hmax = 0.6, mean hmin = -0.4, SD = 1) that changed 

values at time points determined by a Poisson process 

(average rate = 0.01 Hz); and (3) random excitatory inputs 

from presynaptic populations that are external to the 

network, modeled by adding excitatory pulses of random 

amplitude arriving according to a Poisson process to the 

argument of a population’s  steady state firing rate function.  

Variability in neurotransmitter release and in the 

homeostatic sleep drive are motivated by the stochastic 

nature of synaptic transmission, while random excitatory 

inputs simulate activity on excitatory afferents from other 

brain regions targeting network populations. 

As described previously, parameter values were based on 

or consistent with experimental data when possible, or set to 

physiologically reasonable values that optimized state-

dependent behavior [14]. All equations and parameter values 

are as given in [14] with the exception of the noisy 

formulation of the h-equation; the inclusion of random 

excitatory inputs to the REM and Wake/REM-promoting 

populations with average rate 0.001 Hz, mean amplitude of 

10 and SD of 1; an increased rate of 0.004 Hz, mean 

amplitude of 10 and SD of 2 for the random excitatory 

inputs to the LC and DR populations; and the values of the 

following parameters: gG,LC = gG,DR = 2.7, gN,R = gS,R = 3.8, 

gA,R = 3, gG,R = 1.65, gA,WR = 0.6, gG,WR = 1.5, R = 10s, A(R) 

= A(WR) = 50s, LC = DR = 1, R = -0.72, R = 0.28, WR = -

0.15, k1 = 0.6, k2 = 4, hw = 170s, and hs = 250s. Model 

equations were numerically solved using a modified Euler 

method with time step 0.005s implemented in XPPAUT 

(http://www.math.pitt.edu/~bard/xpp/xpp.html).   

C. Statistical analyses of results 

States of wake, NREM sleep, and REM sleep were scored 

based on the activity levels of wake-, NREM-, and REM-

promoting populations.  Data were scored in 10 s epochs 

according to the dominant state in each epoch.  We 

compared the simulated rat sleep-wake behavior from 10 

simulation runs to that reported for nocturnal rats in the light 

period [19] using a two-sample t-test with 5% significance. 

To analyze the fine architecture of the simulated sleep-

wake behavior, we computed Kaplan-Meier survival 

distributions for wake and sleep bout durations (NREM and 

REM sleep were both scored as “sleep” for this analysis).  

Statistical distributions of the bouts were determined by 

plotting data in log-log and semi-log coordinates and fitting 

by linear regression [5, 20].  We used r2 values >0.95 to 

evaluate goodness-of-fit to power-law and exponential 

distributions.  These analyses were performed with 

MATLAB (The Mathworks Inc., Natick, MA, USA). 

III. RESULTS 

The model generated realistic rat sleep-wake patterning 

with standard summary statistics showing no significant 

difference from those reported for experimental rat sleep 

recordings in the light period (two-sample t-test, p<0.05, 

Table I).  More importantly, distribution profiles of 

simulated wake and sleep (NREM and REM sleep states 

combined) bout durations displayed appropriate qualitative 

features (Fig 2): wake bout durations between 10 and 480 s 

followed a power-law distribution (fit with 861t(-0.837), 

r2=0.9724, Fig 2A inset), while sleep bout durations 

followed an exponential distribution (fit with 135.8exp(-

0.0101t), r2=0.9882, Fig 2B inset).  Fits of either distribution 

with alternate functions, such as an exponential function for 

the wake durations or a power-law function for sleep 

durations, yielded lower r2 values (r2=0.9213 and r2=0.6216, 

respectively).  The threshold of 480s for power-law behavior 

of wake bouts is consistent with the range of durations 

previously reported to show a power-law relation in 

experimentally recorded rat sleep during the light period [9]. 

In experimental recordings of rat sleep during the light 

period, the longest few percent of wake bouts did not follow 

a power-law relation but instead formed a hump-like tail 

representing sustained bouts with durations up to 100 min, 

most likely promoted by environmental stimuli [9].  In our 

simulations, the longest 4% of wake bouts also deviated 

from power-law behavior, but maximum durations were 
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approximately 15 min reflecting the absence in the model of 

external inputs that would promote very long wake bouts. 

Obtaining appropriate distribution profiles of wake and 

sleep bout durations depended on the stochastic elements 

included in the model. Generally, when all stochastic 

elements ((1)-(3) in Sec IIB) are removed from the model, 

states cycle through wake, NREM, REM, and return to 

wake, and bout durations are fixed for each state [14]. 

 
To assess the contributions of each stochastic element, we 

considered the distribution of wake and sleep bout durations 

in the presence of the following: variability in 

neurotransmitter levels only; variability in neurotransmitter 

levels and sleep homeostat thresholds; variability in 

neurotransmitter levels and the presence of random 

excitatory inputs to the wake-promoting populations.  

Based on the structure of our model network, sustained 

wake bouts occur at the homeostatically-controlled 

transitions between NREM sleep and wake, and shorter 

wake bouts occur at the termination of REM bouts as a result 

of the reciprocal interactions between the wake-promoting 

LC and DR populations and the REM-promoting population.  

For the model parameter values considered here, the addition 

of neurotransmitter variability causes regular REM cycling 

to occur during the NREM sleep state with brief wake bouts 

terminating each REM bout.  As a result, the distribution of 

wake bout durations is bimodal with symmetric peaks 

centered at approximately 30 s and 180 s (Fig 2A, dashed 

curve).  Adding variability in the homeostatic sleep drive h 

introduces much more variance in the durations of sustained 

wake bouts (dash-dotted curve) thus preventing the survival 

curve from falling precipitously around 200 s.  Including 

random excitatory inputs to the wake-promoting populations 

introduces many short wake bouts that contribute to an 

initial power-law profile for the shortest bout durations 

(dotted curve).  Transforming the bimodal distribution that 

results when both homeostatic variability and random 

excitatory inputs to the wake-promoting populations are 

removed (dashed curve) to a power-law-like profile (circles) 

required that, compared to the brief “post-REM” wake 

bouts, the randomly initiated wake bouts have shorter 

average duration and the homeostatically initiated wake 

bouts have longer average durations.  Therefore, both the 

existence of three separate mechanisms with distinct time 

constants governing wake bout maintenance and the 

appropriate relationship among the time constants produce 

power-law-like behavior of wake bout durations. 

For sleep bouts, the longest duration bouts (> 200s) 

followed approximately exponential distributions for every 

combination of stochastic elements included in the model 

(Fig 2B, dashed, dash-dotted and dotted curves), reflecting 

the variable termination of these longer bouts by 

homeostatically-controlled transitions to sustained wake or 

brief wake bouts following REM bouts.  Obtaining an initial 

exponential profile for shorter sleep bouts depended on the 

presence of random excitatory inputs to the wake-promoting 

populations that introduced higher fragmentation of the 

NREM state (dotted curve).  
TABLE I 

COMPARISON OF SUMMARY STATISTICS FOR SIMULATED AND 

EXPERIMENTALLY RECORDED RAT SLEEP PATTERNING  

    

Mean (SEM) 

percent time in 

state 

Mean (SEM) 

bout duration 

(min) 

Mean (SEM) 

number of 

bouts 

Model
1
 Wake 31.0 (1.6) 1.5 (0.1) 51.6 (2.0) 

 NREM 53.7 (1.5) 2.6 (0.1) 50.1 (2.0) 

 REM  14.6 (0.5) 1.4 (0.03) 24.3 (0.8) 

Data
2
 Wake 31.0 (1.5) 1.6 (0.2) 47.4 (2.0) 

 NREM 55.0 (2.0) 2.8 (0.1) 47.2 (2.0) 

  REM 16.0 (1.0) 1.5 (0.05) 25.9 (1.5) 
1
Computed from 10 simulation runs; 

2
Sleep recordings from nocturnal rats 

in the light period under 12:12 light/dark conditions [19]. 

IV. DISCUSSION 

A. Summary and limitations 

We have shown that a physiologically-based sleep-wake 

regulatory network model with an underlying deterministic 

structure for neuronal interactions and with appropriate 

stochastic elements can generate realistic rat sleep-wake 

behavior as assessed by both standard summary statistics 

and survival analysis of bout distributions.  We matched 

simulated sleep-wake behavior with standard statistics 

reported for rat light period behavior, and since wake and 

sleep bout duration distributions were not reported for this 

data set, we constrained the model to reproduce qualitative 

features of reported distribution profiles.  While these results 

may not represent an optimal fit of the model to the fine 

temporal architecture of rat sleep behavior, they do indicate 

how a deterministic model can more accurately replicate 

sleep-wake temporal dynamics.  Future work will focus on 

constraining our physiological model with experimental 

recordings of rat sleep-wake behavior, for which 

distributions of REM sleep bout durations may also be 

investigated. 

For our model network, the included stochastic elements 

Fig 2: Survivor plots of 

wake bout (A, log-log) and 

sleep bout (B, semilog) 

duration distributions from 

10 model simulation runs 

(open circles).  Insets 

show optimal fits of wake 

bout distribution to a 

power-law function (A) 

and sleep bout distribution 

to an exponential function 

(B). Bout distribution 

profiles depend on 

stochastic components 

included in the model: 

neurotransmitter 

variability only (dashed 

curves), neurotransmitter 

and sleep homeostat h 

variability (dashed-dotted 

curves), neurotransmitter 

variability and random 

excitatory inputs to LC 
and DR (dotted curves). 
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contributed to the distributions of bout durations, and 

removal of any of these elements compromised the 

qualitative profile of bout distributions.  For wake bouts, an 

appropriate distribution profile depended on the existence of 

multiple mechanisms for state transitions and a specific 

relationship among the time constants associated with each 

of these mechanisms.  For sleep bouts, durations were 

determined by the occurrence of wake bouts and variability 

in each of the mechanisms initiating wake bouts readily 

generated an approximately exponential distribution for 

sleep bout durations. 

 Despite the important role of stochastic elements in 

model behavior, the majority of state transitions are 

controlled by deterministic dynamics inherent to network 

structure.  However, the structure of the mammalian sleep-

wake regulatory network, especially mechanisms regulating 

REM sleep, has not been completely determined. Future 

work should consider other network structures and the 

implications of different structures on resulting simulated 

sleep-wake temporal architecture.  In addition, although we 

have shown that the stochastic elements we included were 

sufficient to produce appropriate distributions of wake and 

sleep bouts (and were necessary in this context), we have not 

shown that they are the only elements that could generate 

these results.  Future work should determine the necessary 

and sufficient stochastic elements required for generating 

realistic sleep-wake behavior in a given deterministic model 

and evaluate the robustness of these elements across 

different network structures.   

B. Qualitative features of sleep-wake architecture 

The characterization of power-law behavior for wake 

bouts and exponential behavior for sleep bouts has been 

questioned, particularly when these characterizations are 

only applied to part of a distribution (such as wake bouts < 

480 s, see below) [11].  In particular, multi-exponential 

distribution profiles have been proposed to provide more 

accurate fits for wake bout durations [2, 3]. Furthermore, 

even when sophisticated fitting techniques are applied [21], 

recent work has shown that it can be difficult to distinguish 

between power-law and multi-exponential behavior [11].  

This suggests that our simulation results may also be well fit 

with a multi-exponential function.  The pertinent question, 

however, may not be which function better fits wake bout 

distributions, but instead what the characteristics of the 

distribution imply for the mechanisms underlying bout 

initiation and maintenance.  The presence of dissimilar 

behavior in wake and sleep bout durations highlights a lack 

of symmetry between states. However, if simulated sleep-

wake behavior is described by regular movement around a 

hysteresis loop, as occurs in models of a mutually inhibitory 

flip-flop switch, then the resulting distributions of wake and 

sleep bout durations will be similar.  In our model, 

disruption of the underlying hysteresis loop by stochastic 

elements, asymmetries in the site of action of some 

stochastic elements and the additional wake transition 

mechanism provided by the reciprocal interaction structure 

regulating REM sleep allow for the emergence of qualitative 

differences in distributions of wake and sleep bouts. 
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