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Estimating integrated information with TMS pulses
during wakefulness, sleep, and under anesthesia

David Balduzzi

Abstract— This paper relates a recently proposed measure of
information integration to experiments investigating the evoked
high-density electroencephalography (EEG) response to tran-
scranial magnetic stimulation (TMS) during wakefulness, early
non-rapid eye movement (NREM) sleep and under anesthesia.
We show that bistability, arising at the cellular and population
level during NREM sleep and under anesthesia, dramatically
reduces the brain’s ability to integrate information.

I. INTRODUCTION

Consciousness fades every night during early NREM sleep
and under dosages of anesthetic, although average neuronal
firing rates differ little from those observed in wakefulness
[1], [2]. Since neurons remain active across these different
states, it is interesting to ask how physiological changes
between sleep and wakefulness affect information processing
in the brain, and to investigate whether information-theoretic
measures can be developed that distinguish conscious from
unconscious states.

Developing robust criteria for determining whether a pa-
tient is conscious is important since a small fraction of
patients regain or remain conscious during surgery [3]. The
simplest method for assessing conscious awareness, long
used in clinical settings, is to check for responses to verbal
commands. This is unsatisfactory since there are known
instances of patients who are clinically unresponsive — due,
for example, to the effect of paralyzing agents, loss of
motivation to respond, or selective brain lesions — but appear
to be conscious [4], [S5]. Measures of conscious awareness
based on the EEG signal such as the bispectral index have
been used in clinical settings [2]. However, the bispectral
index can classify responsive patients as unconsciousness [6],
suggesting alternative measures are required.

Integrated information, which measures the obstruction
to decomposing the information generated by a system of
interacting components into independent parts, has been
proposed as a measure of conscious awareness [7]. Experi-
ments applying TMS pulses in different physiological states
— wakefulness, early NREM sleep and under a dosage of
anesthetic — show marked differences in evoked responses
measured using EEG [8], [9], [10]. It has been argued that the
differences in evoked responses are evidence that the brain
generates more integrated information in waking than during
sleep [11]. However, relating evoked responses to TMS
pulses to the theoretical notion of integrated information [12],
[13] is not completely straightforward. This note analyzes a
minimal model connecting theory to experiment.
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II. INTEGRATED INFORMATION

From an engineering perspective the brain is an extraordi-
narily complex input/output device, composed of billions of
smaller such devices (neurons and populations of neurons).
During wakefulness, it selectively and intelligently responds
to a vast number of external stimuli.

A clear difference between wakefulness and sleep is that
a patient’s repertoire of responses to, say, verbal commands
decreases sharply. This is an unsuitable criterion for con-
scious awareness for many reasons — for example, paralyzing
agents introduced together with dosages of anesthetic may
prevent the patient from responding. It is therefore necessary
to consider internal responses to internal perturbations.

This section introduces two perturbation based measures:
effective information, which quantifies the selectivity of
a devices responses to inputs, and integrated information,
which quantifies the obstruction (in bits) to decomposing the
information generated by a system of devices into informa-
tion generated by a collection of independent subsystems.
For more detailed treatments see [12], [13].
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Fig. 1. Effective information. (A): A deterministic device can receive

144 inputs (black dots) and produce 3 outputs (grayscale). Each of the
inputs is implicitly assigned to a category (shaded areas). (B): The effective
information generated by a device choosing a particular output.

A. Effective information

A device generates information about its environment by
responding selectively to inputs. A thermometer, for exam-
ple, responds selectively to differences in temperature and
is blind to differences in air pressure whereas the converse
applies to a barometer. Observing a device’s response to a
single input tells us little about the differences it detects
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— air pressure and temperature may both be high at once.
Discovering how a device categorizes its inputs requires
exhaustively and actively perturbing it with all of them and
tracking its responses.

Let m denote a device and p™(Z,u¢|2in) the probability
that it chooses output z,,; given input x;,. We perturb the
device and track its responses by applying Bayes’ rule to
the uniform distribution, to compute the actual repertoire
P™(Xin|Zout) Of inputs that cause (lead to) oy

m
P oultin) puss )
p(mout)
For a deterministic device the actual repertoire assigns p =
ﬁ to the M inputs that cause x,,: and p = 0 to the rest.
In Fig. 1A, if the device’s output is DARK GRAY, then the
actual repertoire assigns non-zero probability to the inputs
in the dark gray region. The actual repertoire thus captures
the category of inputs leading to a given output.

An important feature of a device’s output is how selec-
tively it depends on its input. Intuitively, a device that always
produces the same output, no matter the input, generates
no information about its environment. Similarly, if a device
is highly sensitive to its inputs, responding with a different
output for any small change, then it generates considerable
information about its environment.

Formally, we quantify selectivity via effective information

ei(m, our ) = H [p™(Xon o) [p (Xi)], @)

the Kullback-Leibler divergence between the actual reper-
toire and the uniform distribution on the set of potential
inputs.

For a deterministic device, Fig 1B, effective information
admits a simple description as

p™ (xm |Iout) =

total # of inputs
(m ut | — # causing .., :
ez( » Lo f) 082 # causing T,y ©

B. Integrated information

Any collection of input/output devices is itself an in-
put/output device. In particular, the brain is a massively
complex input/output device composed of subdevices which
are densely interconnected so that activity within any area
can rapidly affect distant areas. Indeed, if activity in one
part of the brain were unable to influence other parts, this
would introduce a gap in the organism’s ability to relate
aspects of its environment that competitors could exploit,
reducing the organism’s likelihood of survival. Integrated
information quantifies the weakest link in the information-
processing performed within a collection of devices.

The information generated by a system n relative to a
subsystem m is

et (m —n, xout) = H[pn(Xin|xout)Hpm(Xin|xout) . @

It quantifies the information the larger device generates
over and above the subdevice. Integrated information is the
information generated by the system relative to the minimum
information partition:

(b(na xout) = ez(p

MIP —n, xout) . (5)

The minimum information partition is the decomposition of
the system into disjoint parts that does the least “information-
theoretic damage”, see [12].
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Fig. 2. Integrated information. (AB): A modular system of two non-
interacting components generates independent (orthogonal) categorizations.
(CD): Redundant categorizations overlap, so they generate little more
information together than either taken individually. (EF): Complementary
categorizations generated by functionally integrated, functionally special-
ized devices are more informative together than the sum of their sub-
categorizations.

Fig. 2 contains three examples that we work through to
build intuition which will prove useful when interpreting
experimental results. Panels AB show a modular system:
there are interactions within but not between the two ellipses.
The categorizations performed by devices n® and n* are in-
dependent, as can be seen from the structure of the categories
they generate: device n? is insensitive to perturbations of 12
and similarly for n* and n'. The system has ¢ = 0 and
decomposes into two completely independent subsystems.
The information generated by the system is the sum of the
information generated by its two subsystems.

Panels CD show a redundant system: devices n® and n*
categorize inputs similarly implying their respective cate-
gories largely overlap. The information generated by the
devices together is little more than either taken individually.

Finally, panels EF show two complementary categoriza-
tions. The devices treat their inputs quite differently so
their categorizations have little overlap. The complementary
devices generate far more information together than the sum
of their individual contributions.
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III. WAKEFULNESS, SLEEP AND ANESTHESIA

We review results distinguishing brain activity during
wakefulness from early NREM sleep and under anesthesia. A
prominent feature of the brain during early NREM sleep and
under anesthesia is that neurons and populations of neurons
are bistable which, expanding on [11], we argue dramatically
reduces the brain’s ability to generate integrated information.

A. Observed differences in brain activity

The brain is never inactive; neurons fire at leisurely rates
even during sleep and under the influence of anesthetics.
However, the dynamics of neural activity is markedly differ-
ent in conscious and unconscious states.

1) Spontaneous activity: At a cellular level, during
NREM sleep cortical neurons undergo a slow oscillation of
about 1 Hz between depolarized up-states, characterized by
tonic firing similar to wakefulness, and hyperpolarized down-
states, where neurons are silent [1]. Anesthetic has a similar
effect on cortical neurons, with higher doses increasing the
duration of the hyperpolarized down-states [2].

At a population level, during NREM sleep small initial de-
polarizing events propagate through cortex by progressively
depolarizing, and thus recruiting, populations of neurons
into synchronized up-states spreading across large swathes
of cortex that are visible as traveling slow waves in EEG
recordings [14]. Similar slow waves have been observed
under propofol anesthesia [15].

2) Evoked responses: The brain’s evoked response to
external perturbations in the form of TMS pulses is also quite
different during wakefulness compared to early NREM sleep
or under anesthesia.

Applying TMS pulses to different cortical areas during
wakefulness elicits characteristic, reproducible sequences of
evoked potentials that involve many cortical areas over a
time period of around 300ms [16]. By contrast, responses
during early NREM sleep tend to be either extremely spa-
tiotemporally constrained, when pulses target motor cortex,
resulting in a short (< 150 ms) local response, or else,
when pulses target mesial parietal regions which form a
hub in cortical connectivity, the evoked response resembles
spontaneous slow waves, propagating over much of the brain
in a large, undifferentiated wave of depolarization.

Neurons are thus bistable during NREM sleep, alternating
between depolarized up- and hyperpolarized down-states at
the cellular level. The bistability also arises at the population
level, appearing as large slow-waves of propagating depolar-
ization clearly visible in EEG recordings. Finally, perturbing
the brain during sleep and anesthesia yields either a localized
response that fades rapidly, or else stimulates a global event
closely resembling spontaneous slow-waves [8], [9], [10].
Responses to TMS pulses during wakefulness are far more
complex, resulting in complex, reproducible sequences of
evoked responses the precise nature of which depends on
the location and nature of the stimulation.
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Fig. 3. A minimal model of evoked EEG responses to TMS. AND-
gates firing for 2 or more spikes. During wakefulness (B), pulses result
in variegated responses, differentially recruiting brain regions. During early
NREM sleep, pulses either result in (C) a short, localized response that does
not propagate or (D) trigger a global wave of activity, propagating across
much of the brain, that resembles spontaneous slow waves [8].

B. Implications for integrated information

Integrated information is computed by (i) taking all pos-
sible partitions of a system, (ii) exhaustively perturbing the
devices in each partition with all possible inputs to com-
pute effective information and (iii) finding the (normalized)
minimum. Exactly quantifying integrated information thus
necessitates an extremely fine-grained analysis that is com-
putationally expensive. By contrast, TMS pulses are coarse,
non-physiological perturbations that can be performed only
a few times. Relating TMS evoked responses to integrated
information therefore requires some care.

1) A minimal model: Fig. 3 shows a system of 8 devices
that fire upon receiving two or more spikes. Although the
model is extremely simple, it captures the basic feature that
excitatory neurons fire more if they receive more spiking
inputs. Over larger spatial scales, neural populations contain
a mix of mostly excitatory and fewer inhibitory neurons;
however, the basic trend towards increasing firing activity
in response to increasing firing inputs roughly holds over
physiological ranges. Thus, rather than relate the AND-gates
to individual neurons, we interpret them as minimal models
of populations of neurons whose activity is either above or
below a threshold in high-density EEG recordings.

2) Balanced states generate high integrated information:
Fig. 3B shows a cartoon version of typical evoked responses
during wakefulness: a select subset of brain regions exhibits
activity levels above a threshold [8]. Integrated information
is high (3.9 bits) and effective information generated by the
entire system is the maximum (8 bits).

A system generates high effective information if it is
extremely sensitive to change in its inputs. Recall, Fig. 1,
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high e: means that the category is very small, so almost
any modification of the input changes the output. A system
generates high integrated information if the effects of pertur-
bations are not local: perturbing one part of the system alters
the output of other parts. Compare Fig. 2B, where changing
perturbations along the y and z-axes makes no difference to
devices n® and n* respectively, with Fig. 2F, where there
are no orthogonal axes respecting the categorizations. The
waking brain, like the firing pattern in Fig. 3B, exhibits
highly selective, functionally integrated responses to inputs.
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Fig. 4. Integrated information as a function of population activity.
Nodes as in Fig. 3. Integrated information peaks for intermediary activity;
if too many or too few elements are active, ¢ drops markedly.

3) Bistability reduces cortical integration: Figures 3CD
show cartoon versions of evoked responses to TMS during
early NREM sleep: there is either a short, localized response
near the site of the pulses, or else pulses trigger global
waves of activity propagating over most of the brain [8].
In both cases effective information is reduced slightly and
integrated information drops dramatically. This reflects a
general phenomenon: Fig. 4 shows the maximum values
of integrated information across all firing rates. Integrated
information peaks when two or three gates are active, and
decreases substantially at very high or low firing rates.

Fig. 2CD explains the drop in effective information. The
AND-gates have broadly similar mechanisms (though not
identical since their connectivity differs), so when they all
produce the same output there is substantial redundancy in
the information they generate.

Although the system is not composed of independent sub-
systems as in Fig. 2A, the drop in integrated information can
nevertheless be explained via Fig. 2B. When all AND-gates
are firing the system is relatively insensitive to perturbations
of individual gates. For example, whether or not the gate
marked by a black arrow in Fig. 3D fired makes no difference
to the system’s response if all other gates are firing. Some-
what paradoxically, homogeneous global responses generate
little integrated information since they are insensitive to
local differences in activity. Similar considerations apply to
extremely low firing rates, Fig. 3C.

IV. CONCLUSION

Directly computing how much integrated information a
large system, such as the brain, generates is computationally
challenging. We therefore considered a minimal model that
captures a basic feature of cortical populations: excitability.
The model suggests that neuronal bistability at the population
level, resulting in homogeneous brain responses insensitive
to local variations in activity, may dramatically reduce the
integrated information generated by cortex. Bistable dynam-
ics can decrease effective information by 20 to 30% and
integrated information by more than 90%, suggesting that
sleep (and also anesthesia) are characterized by a breakdown
of effective connectivity between brain regions [8]. Better un-
derstanding the relationship between integrated information,
conscious awareness, and neuronal bistability — particularly
in borderline cases — requires further empirical studies and,
crucially, tractable, biologically realistic models.
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