
  

 
  

Abstract— Optical imaging in vivo is an important tool for 

allowing researchers to understand neural ensemble 
interactions during awake behavior, sleep, anesthesia and 
during seizure activity. A major bottleneck in the overall 
efficiency of neural imaging experiments is the need for post-hoc 
analysis of imaging data. Computational capabilities are now at 
the point where real- or near-real-time multivariate analysis of 
imaging data is possible as data is acquired. In this paper we 
address the feasibility of performing real-time data analysis with 
a desktop computer, MATLAB, and a graphics processing unit 
(GPU).  Important components of any real-time functional 
imaging analysis system are 1) dimensional reduction of the 
data, 2) visualization of the reduced vector space and 3) rapid 
calculation of functional connectivities. The ability to assess 
sources of variability in the data, and connectivity estimates on 
the fly, are potentially transformative for the way imaging 
laboratories perform their work. Here, we present benchmarks 
for analysis of functional imaging data using dimensional 
reduction methods and estimation of functional connectivities 
using least-squares and ridge regression methods.  

INTRODUCTION 

 
or many years, electrophysiologists have plugged the 
output voltage from their electrodes into speakers and 
oscilloscopes to get immediate feedback from their 

measurement system [1]. This has allowed regions of neural 
tissue that respond to one or more stimuli to be rapidly 
identified. With this approach, the experimentalist can 
quickly optimize the experiment. Similar feedback does not 
currently exist in laboratories that use imaging methodology.  
Typically, data is acquired and saved for post-hoc analysis [2, 
3]. With this approach, the experimentalist only finds out 
after a time-consuming experiment (and often a time-
consuming analysis of a large quantity of low signal-to-noise 
ratio data) whether the stimulus conditions gave rise to a 
useable signal. The reason for this is the historical 
unavailability of inexpensive computational power capable of 
rapid analysis of large amounts of imaging data, often 
resulting in many hours of wasted time per experiment.  
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This paper studies some of the important components 
necessary for performing real- or near-real-time analysis of 
the multivariate data measured in such imaging experiments. 
The ability to calculate and visualize functional connectivities 
on the fly in neural data is increasingly important as our 
ability to collect data by various imaging and implanted-
electrode methods improves and the complexity of 
experiments increases. Functional connectivity, which refers 
to the statistical relationship between neuronal observables 
computed from physiological data rather than anatomical 
measurements, allows researchers to identify spatio-temporal 
activation patterns and generate hypotheses concerning how 
regions interact during an experiment. A clear pre-requisite to 
computing functional connectivities in neural data is the 
ability to identify significant structure in noisy data.  

Our target application is the development of a near-real-
time multivariate analysis pipeline for neural imaging data.  
We acquire imaging data via a medical optical imaging CCD 
camera, which directly loads data into MATLAB using the 
Image Acquisition Toolbox [4].  The focus of this paper is 
therefore the maximization of computation speed of 
algorithms for computing functional connectivity for this 
data. Our specific application area is described in [3] for 
mapping the propagation of seizure-related neural bursting in 
the brain of the larval zebrafish transgenic for a ratiometric 
calcium indicator. However, there are many areas of medical 
imaging, medicine and neuroscience where real-time 
capabilities have considerable utility, for example, real-time 
PCA is currently being developed for spectral imaging video 
captured on surgical cameras [5]. In that case, PCA has been 
used to enhance and make possible the visualization of 
features normally unseen by the human eye. In vivo imaging 
studies in the rat have been used to elucidate UP and DOWN 
states observed in the neocortex during anesthesia and quiet 
wakefulness [6]. Estimation of network structure from 
functional magnetic imaging data and in vivo 
electrophysiological studies are also an active area of 
research [2, 7-9]. 

We report results of the application of linear models to 

the analysis of simulated imaging data and how, using a fast 

desktop computer and careful selection of dimensional 

reduction algorithms, we are able to identify structure in 

multivariate data in real- or near-real-time (depending on the 

time window being analyzed) using MATLAB [4] and GPU 

optimized Jacket DLA [10] 

Section I below outlines our simulated dataset and 

estimation methods. We have chosen two examples to 

illustrate functional connectivity estimation in continuous 

data of different dimensions in near-real time.  In the first 

Near-real-time connectivity estimation for 

multivariate neural data 
Anne C. Smith, Christopher P. Fall, and Andrew T. Sornborger  

F

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 4721

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011



  

example, we consider well-conditioned data with dimensions 

typically found in electrophysiology experiments (i.e. where 

there are more measurements than observables, Fig 1).  In the 

second example, we consider the ill-conditioned case more 

typical of imaging experiments (i.e. where there are many 

more observables than measurements, Fig 1). Section II first 

outlines performance results on the two simulated data sets. 

These results clearly indicate that the SVD is the crucial 

algorithm for speed optimization. We therefore then present a 

more detailed analysis of the performance of SVD 

algorithms, including performance enhancements from the 

graphical processing unit (GPU).  In Section III we discuss 

our results and make some concluding comments. 

I. METHODS 

A. Data  

Our goal here is to develop near-real-time methods to 

analyze optical imaging data.  We assume the images are 

acquired at high frequency (for example, at a rate of 500-

1000 images per second) with a reasonably large sampling 

density (for example, 128 x 128 = 16,384 pixels).   For 

reasonable analysis speeds, we propose to analyze the data 

in windows of 100-1000 frames allowing the analysis to be 

completed and visualized before the next set of images has 

finished being acquired, that is a real-time analysis.  For 

simplicity, we consider only monochromatic data. Imaging 

data matrices typically have many more observables than 

measurements (Fig. 1). Because such data sets have many 

more observables than measurements, they are ill-

conditioned (i.e. their pixel-pixel covariance matrix is 

uninvertible) and require some sort of dimensional 

reduction. This imaging data will be compared with well-

conditioned data (fewer observables than measurements and 

hence invertible pixel-pixel covariance matrix), as would be 

typical of electrophysiology, EEG or MEG experiments. 

B. Model and Estimation Algorithms 

We represent a block of images changing in time by a 

matrix, X , of positive values with dimension the number of 

pixels ( P ) by the number of points in time ( T ).  Matrix 

( )X t  is composed of snapshot image vectors ( )x t  where

( ) { ( 1), ( 2),..., ( )}X t x t x t x t T= + + + . 

Here we are interested in computing a connectivity 

matrix,  M , from the observations using the autoregressive 

(AR(1)) process: 

    

( 1) ( ) ( )x t M x t tρ ε+ = + +                                  (1) 

  

where ( 1, ..., )      t t T= is time of a given frame, ρ  is a 

constant (positive) drift term and ( )tε  is a zero-mean 

Gaussian noise term with unknown variance to be estimated. 

To identify the matrix  M , we consider five candidate 

estimation algorithms.  All of these approaches have been 

well-studied in the context of other application areas.  Our 

focus here is on the speed of the algorithms as implemented 

within MATLAB. 

 

• Algorithm 1. Linear regression applied to the full 

system. We apply a regression algorithm to the full 

system row by row using QR decomposition-based on a 

least squares method (regress.m in MATLAB; [11]). 

• Algorithm 2. SVD-based reduced data algorithms.  In 

this case, we reduce the data set using singular value 

decomposition, and estimate the connectivity from the 

reduced data [3].  First, matrix X  is transformed into its 

singular value decomposition TUSV  based on the 

selection of a set of eigenvectors with the largest 

eigenvalues.  In our examples we took this number to be 

20 and 50.   We perform the SVD decomposition using 

two methods.  The first, which we call method SVD1, 

uses QR decomposition (svds.m in Matlab, [11], this 

algorithm uses the standard ARPACK procedure [12]) 

and the second, method SVD2, relies on computation of 

the eigenvectors of the smaller of the two covariance 

matrices (pixel-pixel or time-time) and its eigenvalues.   

A reduced connectivity matrix is then computed using 

the same regression algorithm as in B1. Results are 

projected back to the observation space using the 

relation: T

reduced
K UK U≈ . 

• Algorithm 3. Non-negative matrix factorization- 

(NNMF) based reduced data algorithm.   We follow the 

same algorithm as in B2 but use the non-negative matrix 

factors [13, 14] of matrix X WH=  in the regression 

instead of the SVD.  Results are transformed back to the 

observation space using the relation: 1

reduced
K WK W −

≈ . 

• Algorithm 4. Ridge regression. This algorithm makes 

use of ridge regression (also known as Tikhonov 

regularization) which is an estimation method suited to 

ill-conditioned problems.  We chose a small positive 

value (0.01) for the ridge parameter. 

 

Computations were performed on a Microway 

Whisperstation desktop computer with an Intel Xeon E5620 

Westmere 2.4 GHz Quad Core 32nm CPU with 12 Gb RAM 

and 64 Mb cache and an NVIDIA “Fermi” Tesla C2050 

GPU with 3 GB GDDR5 memory with ECC support (144 

GB/sec bandwidth) running 64-bit Linux and 64-bit 

 
 

Fig. 1.  Schematic of range of capability of near-real-time analysis 

using existing software.  In an ideal situation we would be able to 

analyze large numbers of observables and  many measurements. The 

gray-shaded area indicates where we are able to do most calculations 

using current technology. 
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MATLAB 2010b with Jacket DLA (a linear algebra package 

that runs on a GPU by Accelereyes). 

II. RESULTS 

A. Connectivity estimation 

In Figs. 2 and 3 we illustrate performance of the five 

algorithms outlined above for two example data matrices: 

one where there are fewer observations than time points 

(Fig. 2) (well-conditioned data) and a second where there are 

more observations than time points (Fig. 3) (ill-conditioned 

data).    

For the first example we consider an image matrix X  of 

size 20 by 10,000 (Fig. 2A) generated by Eq. 1 using 

parameters as follows.  Matrix  M has values of 0.8 on the 

diagonal and off-diagonal elements composed of two non-

zero blocks of positive (0.015) and negative elements (-

0.015) and two blocks with zeros (see Fig. 2B).  The 

constant drift term is 0.1 K = and zero-mean Gaussian noise 

is added at each time step with standard deviation 0.01.   The 

initial image is all zeros i.e. ( ) 0x t = . 

Estimates of connectivity computed using four of the 

algorithms (B1, B2A, B3 and B4) are shown in Fig. 2 

(Panels C-F, respectively).  (Results for B2B were similar in 

accuracy so we do not show the estimated connectivity 

matrix.)  In Panel 2G and 2H we summarize the mean 

squared error (MSE) and elapsed computational time.  For 

this example, the two SVD and NNMF methods are the most 

accurate.  Computational times are comparable between all  

methods though the SVD2 method is the fastest.  

In Fig. 3 we show corresponding results for a matrix X  of 

size 200 by 100 generated using Eq. 1.  Matrix  M has the 

same diagonal elements as the previous example but off-

diagonal values are reduced by a factor of 10.  The same 

drift, noise and initial values were used as in the first 

example. While this second example has fewer matrix 

elements, it is quite slow to estimate using regression and 

ridge regression methods (Fig. 2H). These two methods also 

yield high mean squared errors (Fig. 2H). For this example 

the SVD2 method is fastest and most accurate.   

Our results indicate that the SVD algorithm is most 

appropriate for our real-time application and therefore its 

speed will be crucial to our ability to implement real-time 

analysis. In the next section we consider only the SVD 

algorithms and look at timing results for a range of matrix 

dimensions. 

B. Singular value decomposition: timing results 

We performed SVD benchmark measurements on random 

normally-distributed matrices using four different SVD 

approaches (Fig. 4).  These are SVD1 and SVD2 algorithms 

described in IB using the CPU and the GPU using 

Accelereyes [10]. 

Fig 4A shows the elapsed time estimate of the SVD using 

SVD1 (MATLAB's svds.m) on the CPU (solid lines), and 

using SVD1 (MATLAB's svds.m) on the GPU (dashed 

lines) for four choices of T (100, 400, 700 and 1000, marked 

above each curve).  As matrix dimension (i.e. number of 

pixels) increases, the computation time increases almost 

 
 

 

 
Fig. 2. Estimation of effective connectivity in a well-conditioned  

system. Panel A shows a 20 by 10,000 matrix of data simulated using 

an AR(1) process and the connectivity matrix (only off diagonal 

elements)  shown in Panel B.  Estimates of the connectivity 

computed by regression, SVD 1, NNMF and ridge regression 

methods are shown in Panels C-F.   Mean squared error from the true 

values for the four methods (with two different SVD 

implementations) are shown in Panel G and corresponding 

computation time is indicated in Panel H. 

 

Fig. 3. Estimation of effective connectivity in an ill-conditioned  

system.  Panel A shows a 200 by 100 matrix of data simulated using 

an AR(1) process and the connectivity matrix (only off diagonal 

elements)  shown in Panel B.  Estimates of the connectivity 

computed by regression, SVD 1, NNMF and ridge regression 

methods are shown in Panels C-F.   Mean squared error from the 

true values for the four methods (with two different SVD 

implementations) are shown in Panel G and corresponding 

computation time is indicated in Panel H. 
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linearly for all four values of T . Use of the

up to a 15-fold increase in computational

shows elapsed times computed using the 

applied to the same test set.  In this case, t

are considerably lower for both CPU and G

GPU showed a small improvement effect 

=1000.  In the regime we are considering

1000 matrices) use of SVD2 results in a 30

the CPU.  Use of the GPU provided no m

additional improvement in speed.  

III. CONCLUSIONS 

Our target was to develop real-time 

analysis software that can perform fast im

neurophysiological data.  Using an optimize

found that real-time analysis was possible 

1000 frames of streaming imaging data wi

delay, but no lost frames (i.e. all data was an

Our experience with SVD estima

considerable speedup can be achieved by

MATLAB code. For example, we achi

speedup for large matrix sizes by computin

the covariance matrix (SVD2) compared

MATLAB ([12]) algorithm (SVD1).  Th

known to be less stable than SVD1, but 

faster. For the data sets that we analyzed

significant difference in the eigenvectors or

that were calculated. 

Using SVD2 for our particular real-time 

GPU only provided a small speedup in co

However, for larger data matrices, other 

post-hoc analysis, GPU computing is ab

significant improvements. In future wor

investigate additional speedup in the real-tim

code specifically designed for the comput

and colleagues [5] have demonstrated ten-

PCA calculations for snap-shot high resoluti

a parallel formulation and custom CUDA co

It is worth noting that it should be st

apply these optimization methods to ge

models (GLMs), which are more appropriat

neural firing rate data [15]. Extension to othe

also be possible [16, 17]. The extra spee

purpose GPU computing should aid in pos

of confidence bounds on connectivity matri

Fig. 4.  Elapsed time for singular value decompositio

random  matrices of varying dimensions.  Each curve

time for computation of the highest 50 eigenvalu

matrices with one dimension on the x-axis and the 

marked on the curve.  We show results found using SV

(B) and using the CPU (solid lines) and GPU (dashe

very large difference in scale of the y-axes between the
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nal speed. Fig. 4B 

e SVD2 algorithm 
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by optimizing the 

chieved a 30-fold 
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red to the default 

This algorithm is 

ut is clearly much 
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 or singular values 
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er operations, and 
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