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Abstract— Coherence analysis characterizes frequency-
dependent covariance between signals, and is useful for mul-
tivariate oscillatory data often encountered in neuroscience.
The global coherence provides a summary of coherent behav-
ior in high-dimensional multivariate data by quantifying the
concentration of variance in the first mode of an eigenvalue de-
composition of the cross-spectral matrix. Practical application
of this useful method is sensitive to noise, and can confound
coherent activity in disparate neural populations or spatial
locations that have a similar frequency structure. In this paper
we describe two methodological enhancements to the global
coherence procedure that increase robustness of the technique
to noise, and that allow characterization of how power within
specific coherent modes change through time.

I. INTRODUCTION

Coherence analysis characterizes frequency-dependent co-

variance between signals, and is useful for multivari-

ate oscillatory data often encountered in neuroscience. In

high-dimensional data sets, such as high-density electro-

encephalogram (EEG), the large number of channels, ranging

from 64 to 256, makes pairwise coherence analysis cumber-

some in practice. Mitra and Bokil have proposed a ”global

coherence” method for summarizing coherence relationships

within large multivariate data sets [1]. This procedure con-

sists of an eigenvalue decomposition of the cross-spectral

matrix, producing a summary statistic that quantifies the

extent to which variance at a particular frequency can be

concentrated within the first mode of the decomposition.

Recently, this method has been applied to analyze EEG

data recorded during general anesthesia [2]. A number of

challenges exist in the practical application of this useful

procedure. Noise from subject movement or muscle activity,

which can introduce large-amplitude transient signals, can

pose problems by introducing broad-band artifacts covering

a range of frequencies of interest. This can occur frequently

in neuroscience experiments, and in clinical settings such

as sleep laboratories or the operating room. If temporal
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averaging is required to estimate the cross-spectral matrix,

relatively brief instances of noise can contaminate global

coherence estimates from a much longer segment of other-

wise artifact-free data. These noisy segments can be removed

manually, but doing so can be tedious and subjective, and is

unsuitable for real-time clinical monitoring applications. For

time-varying signals, such as those recorded during sleep or

induction of general anesthesia, coherent oscillations within

a frequency band of interest may adopt different spatial

distributions, which may be difficult to appreciate from

examining the global coherence summary statistic alone.

In this paper we describe two methodological enhance-

ments to the global coherence procedure that increase robust-

ness of the technique to noise, and that allow characterization

of how activity within specific coherent spatial modes change

through time. We demonstrate the feasibility of this approach

by analyzing high-density EEG recorded during induction of

general anesthesia.

II. METHODS

A. Global Coherence

The global coherence quantifies the concentration of vari-

ance in the first mode of an eigenvalue decomposition of

the cross spectral matrix, computed using a singular value

decomposition [1]:

GC (f) =
S(1) (f)

∑N

k=1 S(k) (f)
, (1)

where S(k) (f) is the k-th largest entry of the singular value

matrix S (f) = diag
(

S(1) (f) , S(2) (f) , . . . , S(N) (f)
)

,

which is unitarily similar to the cross spectral power density

matrix P (f) and satisfies

P (f) = U (f)S (f)U (f)
H

(2)

for some unitary matrix U (f) at frequency f .

In [2], the cross spectral matrix is computed by averaging

cross-spectral estimates over an ensemble of neighboring

windows:

P̄ (f, t) =
1

J

∑

j∈[t−∆t,t]

P (f, j) , (3)

where P (f, t) is the outer product of the tapered Fourier

transform of a data window with itself, and J represents

the number of windows in the interval [t−∆t, t]. A single

discrete prolate spheroidal (Slepian) sequence is used for

tapering. Estimates are allowed to vary in time by sliding

the ensemble of windows in a non-overlapping fashion.
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Fig. 1. Global coherence estimates using time-averaged non-overlapping windows (top), time-averaged overlapping windows (middle), and robust median
estimates of the cross-spectral matrix (bottom) during induction of general anesthesia. The y-axis frequency range goes from 0 to 50 Hz, and the time axis
covers approximately 90 minutes as the concentration of propofol is increased from 0 to 5 µg/ml effect site target concentrations in 1 µg/ml increments.
The approximate time point for loss of consciousness is denoted by the black arrow.

B. Robust Estimation of the Cross Spectral Matrix

Estimates of the cross-spectral matrix as described above

are sensitive to noise. To make cross-spectral estimation more

robust, we use the median in place of the mean. The median

is a robust estimator of centrality, and is much less sensitive

to outliers than the mean.

P̂ (f, t) = median (S) (4)

S = {P (f, t) : t ∈ [t−∆t, t]} , (5)

is the set of Slepian tapered cross spectral density matrices.

Here the median is computed elementwise and also sepa-

rately over the real and imaginary components. Estimates

are allowed to vary in time by sliding in single-window

increments. This overlapping window arrangement allows

the cross-spectral and global coherence estimates to track

dynamics more rapidly than non-overlapping windows.

C. Projection Onto Global Coherent Spatial Modes

Coherent oscillations within a frequency band of interest

may adopt different spatial distributions, which may be

difficult to appreciate from the global coherence summary

statistic alone. To analyze how power within a specific

coherent spatial mode varies as a function of time, we can

compute the variance of the projection onto that mode. In

particular, we can take a coherent spatial mode estimated

from data at a particular moment in time using the eigenvalue

decomposition in (2), and apply the projection over the full

data record to see how the power within that mode changes

in time throughout the course of the experiment.

V(1)f̂ t̂ (f, t) = UH
(1)

(

f̂ , t̂
)

P (f, t)U(1)

(

f̂ , t̂
)

. (6)

Normalizing V(1)f̂ t̂ (f, t) by the total power at frequency

f and time t, we obtain a spatial mode projection power

ratio:

r
f̂ t̂
(f, t) =

V(1)f̂ t̂ (f, t)

tr (P (f, t))
. (7)
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Fig. 2. Spatial distribution of the alpha-band (8-12 Hz) coherent modes and power ratio of spatial mode projection. The spatial distribution, an interpolation

of the modulus of the 64 complex values in the projection vectors U(1)

(

f̂ , t̂
)

which corresponds to 64 EEG electrode positions, is estimated during the

baseline period (top left) and unconscious period (top right), with the anterior of the scalp at the top of the page, and the posterior at the bottom. The
power ratio within these modes as a function of time is shown below.

D. EEG Recordings During General Anesthesia

We induced general anesthesia in normal volunteers with

the approval of the Human Research Committee at the

Massachusetts General Hospital, and followed all hospital

safety regulations for administration of general anesthesia.

We show data from one subject to illustrate application of

the robust estimation methods described above. For the anes-

thetic induction, we increased the effect-site concentration

in step-wise levels of 0, 1, 2, 3, 4, and 5 µg/ml every 14

minutes using a computer controlled infusion [3], [4]. The

subject listened to a series of pre-recorded auditory stimuli

consisting of their name, affectively-neutral words, or a train

of 40 and 84 Hz clicks, presented once every 4 seconds.

Subjects were instructed to press a button to differentiate

between these sounds. We used the loss of button responses

as an indicator of loss of consciousness (LOC). We recorded

64-channel EEG continuously during this time (BrainAmp

MRPlus, BrainProducts, GMBH). Prior to EEG recording,

we acquired structural MRI for each subject and digitized

scalp electrode positions (Polhemus Fastrack 3D). Prior

to data analysis, we co-registered the electrode positions

with MRI-based scalp surface reconstructions obtained with

Freesurfer [5], and re-montaged EEG signals to a Laplacian

reference, using distances along the scalp surface to weigh

neighboring electrode contributions.

For the average-based global coherence procedure de-

scribed in II-A, we used ten 2-second data windows to

estimate the cross-spectral matrix, tapering with a single

Slepian taper with time-frequency bandwidth product of

NW = 2. For the median-based global coherence estimate

described in II-B, we again used 10 2-second data windows,

but used the first 3 Slepian tapers to construct the sample

from which to calculate the median.

III. RESULTS AND DISCUSSIONS

In Figure 1 we show the global coherence calculated in

three different ways: using the original method described in

[2] (top), using that same method but with sliding over-

lapping windows in time (middle), and using the robust
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median estimates of the cross-spectral matrix (bottom). Loss

of consciousness (loss of response to auditory stimuli) occurs

at approximately 65 minutes. We observe that the original

global coherence calculation is highly sensitive to noise,

taking the form of broad-band artifacts (red vertical lines,

Figure 1, top). Application of a sliding window appears to

improve temporal resolution (Figure 1, middle), but noise

contamination remains. Application of the robust cross-

spectral median estimate removes the majority of the noise

artifacts (Figure 1, bottom).

From this analysis we observe a high degree of global

coherence within the alpha band (8-12 Hz). When conscious-

ness is lost, the global coherence appears to shift upwards

in frequency by a small amount (∼1 Hz). To analyze the

spatial distributions and dynamics of these coherent modes,

we apply the spatial projection described in section II-C

above, first using the coherent spatial mode estimated from

the baseline period (Figure 2, middle), and then using one

estimated from the unconscious period (Figure 2, bottom).

The coherent spatial mode estimated from the baseline period

shows a strong posterior dominance in the alpha band,

consistent with the normal alpha rhythm. The spatial mode

coming from the unconscious period, however, shows a

strong frontal distribution in the alpha band. If we examine

the variance within this mode over the full data record, we

observe that power in the posterior mode decreases as the

experiment proceeds and the level of propofol is increased

(Figure 2, top left), whereas the frontal mode has little

power during the conscious period, but turns on after loss

of consciousness (Figure 2, top right).

In this paper we focused on methods for robust estimation,

but did not discuss statistical inference, which will be ad-

dressed in future work. Although the cross spectral matrices

follow a multivariate Chi-squared distribution (Wishart), the

global coherence does not have a closed-form distribution,

because the singular value decomposition lacks a fixed func-

tional form. Markov Chain Monte Carlo (MCMC) methods

may provide a means of calculating an empirical distribution

for the global coherence which can be used to calculate

confidence intervals or for hypothesis testing.

In additional to coherence analysis, results with other

indicators of the state of consciousness for this experiment

can be found in [6] and [7].

IV. CONCLUSIONS

The global coherence is a useful method for summarizing

patterns of frequency-dependent co-variation in multivariate

time series. In this paper we have developed a robust

estimation method that improves the performance of this

procedure in noisy data that are frequently encountered in

neuroscience experiments, and in clinical settings such as

sleep laboratories or the operating room. Furthermore, we

have introduced a simple projection procedure that can be

used to assess the dynamics of specific oscillatory modes

discovered using global coherence analysis. We have illus-

trated the application of this method on EEG data recorded

during induction of general anesthesia, but the method is

applicable to a wide variety of neuroscience applications

featuring multivariate neurophysiological recordings.
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