
  

  

his work presents a robotic wheelchair that can 
be commanded by a Brain Computer Interface (BCI) through 
Steady-State Visual Evoked Potential (SSVEP), Motor Imagery 
and Word Generation. When using SSVEP, a statistical test is 
used to extract the evoked response and a decision tree is used 
to discriminate the stimulus frequency, allowing volunteers to 
online operate the BCI, with hit rates varying from 60% to 
100%, and guide a robotic wheelchair through an indoor 
environment. When using motor imagery and word generation, 
three mental task are used: imagination of left or right hand, 
and imagination of generation of words starting with the same 
random letter. Linear Discriminant Analysis is used to 
recognize the mental tasks, and the feature extraction uses 
Power Spectral Density. The choice of EEG channel and 
frequency uses the Kullback-Leibler symmetric divergence and 
a reclassification model is proposed to stabilize the classifier. 

I. INTRODUCTION 

he Group of Rehabilitation Robotics of Universidade 
Federal do Espírito Santo (UFES), Brazil, is developing 

a robotic wheelchair which can be commanded by eye 
blinks, eye movements and head movements (Fig. 1). 
Currently, a BCI is being developed in order to users can 
command it by brain waves. Although in previous work [1], 
[2], we have used brain waves to command the robotic 
wheelchair, in that case the brain waves were dependent of 
the opening and closing of the user’s eye, because the brain 
waves were dependent of the presence and absence of visual 
excitation. In this work, the BCI uses only the brain 
electrical activity (ElectroEncephaloGram - EEG) to identify 
signal patterns related to the performance of mental tasks. 

In this context, several research groups have proposed 
methods for preprocessing, feature extraction and 
classification of EEG patterns for BCI usage. Jia et al. [3] 
perform an offline classification of motor imagery tasks 
using EEG channels C3 and C4, filtering the signal between 
10-12 Hz and using Linear discriminant analysis (LDA) for 
classification; Liu et al. [4] perform an offline classification 
of finger movement based on the premovement potential 
using the EEG channels C3 and C4, and filtering the signal 
into two distinct frequency bands (0-3 Hz and 9-31 Hz), 
Common Spatial Subspace Decomposition (CSSD) and 
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Artificial Neural Network (ANN) are used for classification; 
Anderson et al. [5] perform a pseudo-online classification of 
three mental tasks using 32 electrodes, the signal is filtered 
between 8-30 Hz, Short-Time Principal Component Analysis 
(STPCA) is used for feature extraction and LDA for 
classification; Blankertz et al. [6] perform an online 
classification of premovement potentials with user feedback 
using 128 electrodes, Common Spatial Pattern (CSP) and 
LDA.  
 

 
Fig. 1. Robotic wheelchair developed in UFES/Brazil. 

 
In this context, several research groups have proposed 

methods for preprocessing, feature extraction and 
classification of EEG patterns for BCI usage. Jia et al. [3] 
perform an offline classification of motor imagery tasks 
using EEG channels C3 and C4, filtering the signal between 
10-12 Hz and using Linear discriminant analysis (LDA) for 
classification; Liu et al. [4] perform an offline classification 
of finger movement based on the premovement potential 
using the EEG channels C3 and C4, and filtering the signal 
into two distinct frequency bands (0-3 Hz and 9-31 Hz), 
Common Spatial Subspace Decomposition (CSSD) and 
Artificial Neural Network (ANN) are used for classification; 
Anderson et al. [5] perform a pseudo-online classification of 
three mental tasks using 32 electrodes, the signal is filtered 
between 8-30 Hz, Short-Time Principal Component Analysis 
(STPCA) is used for feature extraction and LDA for 
classification; Blankertz et al. [6] perform an online 

Robotic Wheelchair Commanded by SSVEP, Motor Imagery and 
Word Generation 

 

Teodiano F. Bastos, Sandra M. T. Muller, Alessandro B. Benevides, Mario Sarcinelli-Filho  

Abstract— T

T

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 4753

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011



  

classification of premovement potentials with user feedback 
using 128 electrodes, Common Spatial Pattern (CSP) and 
LDA.  

When using the paradigm of Steady-State Visual Evoked 
Potential (SSVEP), the fundamental component and 
harmonics of a flickering frequency of a visual stimulus are 
present in the ElectroEncephaloGram (EEG) signal. The 
BCIs based on these potentials are called SSVEP-BCI, and 
the interest in developing this kind of BCI is mainly due to 
the robustness of this phenomenon, since this potential is an 
inherent response of the human brain. This leads to a fast 
adaptation of the individual to operate such BCI [7]. 

As SSVEP-BCIs support a greater number of commands 
than the BCIs based on motor imagery [8], they could 
achieve higher Information Transfer Rate (ITR). For 
instance, BCIs that are not based on the SSVEPs reach ITR 
from 10 to 25 bits/min, while the current SSVEP-BCIs reach 
up to 100 bits/min [9]. The high ITR in a SSVEP-BCI is due 
to the high number of commands (up to 13 simultaneous 
commands [10], [11]), and because the SSVEPs are induced 
by external visual stimuli which are more robust and easier 
to control than internally generated stimuli. Thus, according 
to [12], the advantages of this kind of BCI are the high ITR 
with minimum training requirement, robustness against 
noise and artifacts and the relative easiness to increase the 
number of commands. However, the stimulation with small 
squares flashing can cause fatigue if the BCI is used for a 
long time. Also, a SSVEP-BCI depends on some muscle 
control, which leads to an inefficiency for some patients with 
severe motor dysfunction, despite some suggestions for 
SSVEP controlled by the user attention, which would be 
defined as an independent BCI [13], [14]. 

In this work, SSVEP, motor imagery and word generation 
will be used in a BCI to command a robotic wheelchair. 

II. SYSTEM DEVELOPED 

For the research with motor imagery and word generation, 
the EEG data were provided by IDIAP Research Institute 
[15]. This data set contains EEG signals from three normal 
subjects during four sessions, without feedback. In each 
session the subject performed randomly three mental tasks, 
which are the imagination of right or left hand movements 
and generation of words beginning with the same random 
letter. EEG signals were recorded at 512 Hz with a Biosemi 
system using a cap with 32 integrated electrodes located at 
the standard positions of the International 10-20 system. No 
artifact rejection or correction was employed. 

An analysis of the Linear Auto-correlation Function and 
nonlinear Auto-correlation Function were performed to 
determine if the signal is sub-sampled or over-sampled. Both 
functions were calculated for the EEG signals of all 
electrodes and, as a result, the signal was sub-sampled to 64 
Hz. Small time windows of EEG signals, with a fixed 
number of samples, were taken to simulate real-time 
classification. The time windows are continuously displaced 
by a sample (the sliding window technique). Thus, after the 

first time window is filled, each following window is 
generated by displacing the current window by one sample, 
and the BCI classification rate is equal to the sampling rate 
signal. The size of the time window should be enough to 
contain most of the influence of a sample in the next sample 
and characterize a pattern that can be recognized by the 
classifier. To estimate the size of the time windows, the 
coefficients of the Partial Auto-Correlation Function were 
calculated for the EEG signals and a time window size of 
about 1 second was obtained [16]. 

For each time window, the Power Spectral Density (PSD) 
of the EEG signal is calculated. PSD is the Fourier transform 
of the Auto-Correlation Function (ACF) of the signal, if it 
can be considered Wide-Sense Stationary. PSD describes 
how the signal power is distributed in relation to the 
frequency (power can be defined as the squared signal 
value). As the EEG signal was sub-sampled to 64 Hz, the 
PSD was designed to return one coefficient for each integer 
value of frequency, resulting in 33 coefficients. 

A method to smooth the classifications was developed 
[17]. Classification windows were taken to behave as time 
windows and perform a data reclassification. These windows 
are composed of previous classifications and are 
continuously displaced by one classification, resulting in a 
reclassification with the same sampling rate of the signal 
(Fig. 2). 

 
Fig. 2. Time windows and the classification windows. 

 
The new classifier output will be the class with a higher 

weight in this classification window. The weight of each 
previous classification is given in relation to the size of the 
subgroup of equal classes that it belongs in the classification 
window. The weight is calculated by the inverse of the 
probability of a repeated occurrence of a class.  

Using this method, the classifier was able to identify the 
three classes and to obtain results above random (33%) 
success rate. 

In the other research carried out, now using SSVEP, the 
trials were developed with the volunteers sat on a 
comfortable chair, in front of a 17-in LCD display, 0.7 m far 
from it. They were asked to watch a stimulation screen 
generated by an FPGA based subsystem. Such stimulation 
screen consists of four stripes presented simultaneously to 
the user plus of four LEDs used as a visual feedback, as 
illustrated in Fig. 3. Twelve EEG channels, with the 
reference electrode at the left ear lobe, sampled at 600 
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samples/s and filtered with a 0.1 to 100 Hz bandpass, were 
recorded. The equipment of EEG signal recording used is a 
BrainNet-36, from EMSA Equipamentos Ltd.. The signal is 
acquired in intervals of 1 s using a proxy system, developed 
in this work, called EEGProxy. Using the extended 
international 10-20 system, the locations for the electrodes 
are P7, PO7, PO5, PO3, POz, PO4, PO6, PO8, P8, O1, O2, 
and Oz. At the preprocessing step, digital low-pass filtering 
was performed using a 5th-order elliptic filter, with a 
bandpass from 3 to 60 Hz. Also, a spatial filter based on the 
Common Average Reference (CAR) method was 
implemented. 
 

 
Fig. 3. Acquisition system with visual feedback (biofeedback). 

 
In the first trial, a volunteer was asked to watch the screen 

without stimulus, which is called rest state. After a rest state 
acquisition of two minutes, only one trial of 160 s was 
carried out by the volunteer. In this trial the subject was 
asked to watch each strip for 10 s four times. The flickering 
frequencies were 5.6 rps (top), 6.4 rps (right), 6.9 rps 
(bottom) and 8.0 rps (left). A voice alarm was used to warn 
the volunteer to change the strip observed. 

The trial was carried out without using the biofeedback 
system and four healthy male volunteers, aged between 23 
and 36, named as Vol15, Vol21, Vol25 and Vol28, 
participated in this trial. The second trial was performed 
using the visual feedback and only three volunteers Vol1, 
Vol10 and Vol28 participated. Again the EEG signal during 
the rest state was acquired and after that the user was free to 
choose the stripe to be gazed. 

The inputs for the classification step are results from a F-
test, used to feature extraction [18]. The input parameters of 
the classifier are related to peaks that overshoot the SFTcrit 
value. There is no metric for the points which are desired to 
classify and therefore the classifier chosen is a rule based 
one. For that, a decision tree (Fig. 4) was developed and its 
parameters were related to the amplitude of these peaks and 
the associated frequency value. These parameters are 
converted to attributes capable of modeling the system 
suitably. 

For each sample, the decision tree developed has three 
attributes, A1, A2 and A3, concerning to the first ten peaks. 
More details can be checked in [19]. There is one class for 

each stimulus frequency, and when the decision tree 
classifies the sample as belonging to the class X it means 
that sample was not classified. The training step is 
unnecessary in this application, because the classifier use is 
straightforward [20]. This represents a great advantage for 
decreasing the computational cost. 

 

 
Fig. 4. Decision tree implemented for the SSVEP-BCI developed. 

 

III. ROBOTIC WHEELCHAIR 

 
After the research carried out with brain signals, the 

SSVEP-BCI system was implemented onboard the robotic 
wheelchair, using a compact and low-power computer (a 
mini-ITX EPIA computer with 1 GHz of clock frequency 
and 1 GB of RAM). In the BCI developed, such computer 
has the function of processing the EEG signal recorded and 
classify them to generate the command to the wheelchair. It 
is located in the back part of the wheelchair, as well as the 
FPGA responsible for the stimulus generation, as illustrated 
in Fig. 5. 

A volunteer was able to guide the robotic wheelchair 
through the lab (Fig. 6). The stripes were used to command 
the movements of the wheelchair forward (the strip in the 
top), left (the left strip), right (the right strip) and stop it (the 
strip in the bottom). 

IV. CONCLUSIONS 

 
This work presented a robotic wheelchair that can be 

commanded by a BCI through SSVEP, Motor Imagery and 
Word Generation. For these two latter techniques, the 
application of the proposed methods resulted in a classifier 
able to identify the three classes and to obtain results above 
random (33%) success rate. In addition to that, the stability 
of the classifier signal and the ITR make possible its 
application in a BCI to command a robotic wheelchair, in the 
same way of using SSVEP-BCI, in real time. 

When using SSVEP, the development is split in some 
steps that are important to the efficient operation of the BCI. 
Since the protocol of the EEG signal acquisition up to the 
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processing step, it is important to keep in mind that, in future 
works, all these steps have to be simplified to obtain good 
performance. Also, a better graphical interface is important 
to interact with the user. 

 

 
Fig. 5. The mini-ITX and the FPGA used in the BCI system. 

 

 
Fig. 6. Using the SSVEP-BCI to command a robotic wheelchair. 
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