
Wavelet based data analysis for implantable pulse oximetric sensors

Dominic Ruh, Jens Fiala, Hans Zappe, and Andreas Seifert
Department of Microsystems Engineering (IMTEK), University of Freiburg, Germany,

Email: dominic.ruh@imtek.uni-freiburg.de

Abstract— Cardiovascular data recording by implantable
sensor modules exhibits a number of advantages over extra-
corporeal standard approaches. Implantable sensors feature
their benefits in particular for high risk patients suffering from
chronic heart diseases, because diagnosis can be combined with
therapy in a closed loop system. Nevertheless, the measured
photoplethysmographic signals reveal different kinds of noise
and artifacts. There are several parametric and non-parametric
mathematical techniques that try to achieve optimality and
generality in estimating the actual signal out of its noisy
representation. The determination of blood oxygen saturation
and pulse transit time requires one of these mathematical tech-
niques for gaining the exact position and magnitude of maxima
and minima in the photoplethysmograph. A robust wavelet
algorithm resolves the difficulties arising from physiological
data.

I. INTRODUCTION

We recently presented an implantable sensor concept [1],
capable of continuously monitoring vital medical parameters
like blood pressure and oxygen saturation. In contrast to
state-of-the-art sensor concepts, that are non-portable, our
device is an attempt to bridge the gap towards an (24/7)
portable sensor system, that facilitates diagnosis and in
future stages therapy of various heart defects and chronic
diseases, whithout affecting the patients’ quality of life.
Vital medical parameters need to be measured precisely and
as close as possible to their origin to avoid environmental
disturbances. MEMS fabrication is the predestinated and
preferred technology to bring the sensor as close as possible
to the cardiovascular system. Sensor design as well as
application area have to be optimized to not interfere with
the cardiovascular system. The sensor consists of several
optoelectronic devices, that are mounted on a polyimid foil,
as shown in Figure 1. During a standard cardiovascular
surgery, the sensor is mounted on the vessel wall, without
influencing its compliance. Since the transmitted light of sev-
eral LEDs is detected by a photo-diode, the sensor measures
a transmission photophlethysmograph (PPG). Besides pulse
shape, this system focuses on the measurement of two vital
parameters: Oxygen saturation SpO2 and pulse-transit time
PT T . The latter one correlates with the blood pressure [2]. In
order to calculate these two parameters, an exact detection
of the extrema close to the systolic slope in the measured
PPG is inevitable. SpO2 is determined by the ordinate of the
extrema, while the abscissa of the maxima correlate with the
PT T . Different sources of noise as well as motion artifacts
affect the sensor signal. Robust signal processing is urgently
necessary for preserving the peak positions and peak height

in a smooth noise reduced signal representation. In this paper,
we present wavelet de-noising as a powerful mathematical
technique, to overcome this challenge.
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Fig. 1. 3D model of the sensor mounted on an artery.

II. THEORY

Integral transforms are mathematical tools, that simplify
the isolation of the real information s(t) from a noisy
signal x(t), by mapping the measured noisy signal onto
another domain. Since the measured signals are perturbed
by irregularities and colored noise, we write

x(t) = s(t)+n(t), (1)

where the noise n(t) is assumed to be additive. The process
of extracting the information s(t) from the signal x(t) is
depicted in the following three steps:

1) Transform the signal into an orthogonal domain

X̃ = W (x(t)), (2)

2) weight the resulting correlation coefficients in the
transform domain by means of a threshold T

X̃D = D(X̃ ,T ) (3)

3) and inverse-transform the de-noised signal X̃D into its
original domain

s(t)≈ xD(t) = W −1(X̃D). (4)

In engineering, the most popular orthogonal domain is the
frequency domain, where the Fourier transformation is the
key to enter and leave. Whereas the Fourier transformation
provides a perfect frequency representation of the signal,

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 4812

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011



while loosing all time information, the wavelet transform
allows to depict low frequency details with a low temporal
resolution, whereas high frequency details come along with
a high temporal resolution. This allows filtering in the time-
scale domain. In case of wavelet de-noising, a translation
invariant form of the discrete wavelet transform, known as
algoritme à trous or stationary wavelet transform, serves as
a tool to enter and leave the wavelet transform domain [3].
Weighting the detail coefficients in the time scale domain
for selectively filtering or smoothing the data is called
thresholding. In the present case, a non-linear thresholding
function applies:

D(X̃ ,T ) =


x−T if x≥ T
x+T if x≤−T
0 if |x| ≤ T,

(5)

where T is the threshold value. The threshold for each
decomposition level Tlev is given by

Tlev = αlev ·σlev
√

2lnN, (6)

where the detail coefficients’ standard deviation of each level
is estimated by σlev = Mlev

0.6745 . Mlev is the median of the detail
coefficients, N denotes the number of sample points and αlev
is a level dependent factor, according to [4].

III. EXPERIMENTS AND RESULTS

A. In-vivo experiments

The sensor delivers PPG measurements in transmission or
reflection mode at eight different wavelengths. The present
data in this paper were recorded in transmission mode at a
wavelength of λ = 650 nm. Thereby, the sensor was mounted
on the carotid artery of a domestic pig during surgery. Figure
2 shows a photo of the applied sensor.

Fig. 2. Transmissive sensor at the carotid of a domestic pig during surgery.

B. Results

In-vivo measurements contain several sources of distur-
bances, yielding in noisy signals and making it challenging
to correctly interpret and analyze the data. Besides electronic
noise, like colored noise and spikes, superimposed breathing
and motion artifacts negatively influence data analysis.

The sensor signal represents the optical response of the
light transmitted through an artery during one cardiac cycle.
In a first order approximation, the signal is caused by the
vessel wall deformation and hence determined by vessel wall
dynamics with complex oscillating excitation. Overtones that
arise from this polychromatic excitation of the nonlinear
vessel wall mechanics cause this broad frequency spectrum
and lead to a small spectral distance of noise and signal.
Accordingly, the spectrum of the essential information of
the signal roughly lies between 1 and 100 Hz. Additionally,
1/f noise affects this frequency range. The power spectral
density PSD as well as two pulses of the raw signal from
two different experiments are shown in Figure 3 and Figure
4. In 3) the overtones are more pronounced than in 4), while
both signals are covered with colored noise. The different
frequency characteristics are considered in the de-noising
process by the factor αlev, as well as different decomposition
levels.
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Fig. 3. Power spectral density of a 40s measurement. Lower left corner:
Two pulses of the raw-signal in time domain.

The following parameters determine the de-noising proce-
dure introduced in the theory chapter:
• Wavelet
• Decomposition level
• Threshold value
• Thresholding procedure

For both datasets, we used the stationary wavelet transfor-
mation algorithm to enter the Daubechies 2 domain. For
weighting the correlation coefficients, soft thresholding was
employed in both cases. In the first signal, depicted in
Figure 5 and referring to the PSD of Figure 3, the noise
amplitudes are small, but dominant and spikes superimpose
the signal. By choosing a decomposition level of l = 2 with
the parameters αlev to be α1 = 1 and α2 = 1/2, the high
frequency components (spikes) of the signal are eliminated,
while the high frequency details of the overtones remain
unaffected.

In the second case, outlined in Figure 6 and referring to
Figure 4, white noise is the dominant factor that reduces

4813



10
−1

10
0

10
1

10
2

10
−15

10
−10

10
−5

10
0

10
5

Periodogram Power Spectral Density Estimate

Frequency (Hz)

P
ow

er
/fr

eq
ue

nc
y

(d
B

/H
z) Heart rate

Time (s)

PP
G

(V
)

Fig. 4. Power spectral density of a 50s measurement. Lower left corner:
Two pulses of the raw-signal in time domain.
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Fig. 5. PPG with random spikes and its de-noised representation.

the signal-to-noise-ratio. Therefore, the de-noising procedure
was performed at a decomposition level of l = 3, while the
factor αlev equals one for all decomposition levels α1 = α2 =
α3 = 1. Since the overtones are not as dominant as in the
first case, we are able to present the signal in a more smooth
way.

An additional feature is given by the stationary wavelet
transform algorithm. Since the detail coefficients present
high frequency details of the original signal, irregularities are
easily detected due to thresholding of the detail coefficients
as shown in Figure 7. This allows to reveal signal parts
which distort the desired actual signal and make it normally
impossible to recover the correct information out of such
noisy signals. These detected noise components can easily
be discarded that way.
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Fig. 6. Noisy signal with smooth approximation due to de-noising.
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Fig. 7. Two cardiac cycles (upper plot) and the associated lowest level
detail coefficients (lower plot).

IV. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this paper we presented wavelet de-noising for in-vivo
recorded PPGs. The parameter αlev was adapted to de-noise
two signals, which are superimposed by different kinds of
noise. Both results show a good approximation of the in-
vivo recorded signal, while keeping the signal characteristics.
Furthermore, the wavelet decomposition structure simplifies
the detection of signal irregularities, due to high detail
coefficients.

B. Future Works

At the moment, the parameter αlev is chosen heuristically.
Future work will focus on a theoretically well-founded
description of the threshold parameters with adaptive thresh-
olding. An operator d(·) has to be designed to determine
the adaptive threshold T [5]. The refined method has to be
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compared to other signal estimating techniques. Besides this,
the sensor’s signal-to-noise-ratio will be refined.
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