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Abstract— In this paper, an original method to detect sleep
slow waves (SSW) in electroencephalogram (EEG) recordings is
proposed. This method takes advantage of a Matching Pursuit
algorithm using a dictionary reduced to Gabor functions
reproducing the main targeted waveform characteristics. By
describing the EEG signals in terms of SSW properties, the
corresponding algorithm is able to identify waveforms based on
the largest matching coefficients. The implemented algorithm
was tested on a database of whole night sleep EEG recordings
collected in 9 young healthy subjects where SSW have been
visually scored by an expert. Besides being fully automated and
much faster than visual scoring analysis, the results obtained
to the proposed method were in excellent agreement with the
expert with 98% of correct detections and a 77% concordance
in event time position and duration. These results were superior
from those of the classical method both in terms of sensibility
and precision.

I. INTRODUCTION

Human sleep is described through several stages mostly
differentiated by their respective brain electrical activity
([10]) as measured by the electroencephalogram (EEG). Two
main stages are distinguished: rapid eye movement (REM)
and non-rapid eye movement (NREM or non-REM) sleep.
According to [10], sleep EEG slow waves (SSW) are key
components of NREM sleep, especially stage 3 and 4 also
called deep sleep. SSW are defined as an oscillating electrical
activity with a frequency between 0.5 and 2Hz and a peak-
to-peak amplitude higher than 75µV .

Recent medical research studies have shown a strong link
between sleep ([4]) and, on one hand, cognitive functions
such as memory processing ([8]) and, on another hand,
metabolism and hormonal regulations ([11]), both adver-
tently impacted in situations of sleep restriction. These new
evidences explain the increasing interest of physiologists
in the study and precise characterization of sleep and its
components. Meanwhile, visual scoring of raw EEG data
is still considered a major clinical tool in sleep analysis,
despite its inherent limitations: low repeatability, high cost
and disagreement between experts.

Efforts have been made in the recent years to develop
techniques that allow the automatic detection of SSW. Mas-
simini et al. have proposed a simple technique based on
duration and amplitude criteria ([6]), following the original
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Fig. 1. Classic criteria of slow waves detection

definition of [10]. The EEG signal is filtered in the band [0.2-
4]Hz (also called the δ band) and slow waves are selected
using the following criteria: a negative deflection less than
−40µV , longer than 250ms but shorter than 1250ms, a
peak-to-peak amplitude more than 75µV and a overall length
less than 2000ms. The onset and offset of each phase are
defined by zero-crossing. This technique, resumed in fig. 1,
has been used repeatedly in several sleep studies ([8], [1],
[7]). Nevertheless, it has never been validated and has several
limitations: the results depend on the filtering step and it
needs to be used on already scored EEG data in order to
process deep sleep stages only.

Other techniques have been proposed more recently such
as a likeness-based detection using Hilbert transform ([9])
to improve the classic detection algorithm using the SSW
phases. Durka et al. have shown in [3] that matching pursuit
using Gabor functions provides a good description of the
sleep EEG, more particularly slow wave sleep. The matching
pursuit (MP) technique is very interesting as it proposes to
decompose the EEG signal using a dictionary of elementary
waveforms and seems to provide a good description of
the different patterns present in the EEG. Nevertheless, the
description depends on the choice of the dictionary which
needs to be rich enough to provide an accurate description
of the signal. Moreover, this technique is time consuming
and quite costly since all the components of the signal are
described.

The method described here proposes to describe the EEG
signal using a MP technique while restricting the dictionary
to “slow wave look alike” waveforms only. In this way, the
signal is described using only slow components and slow
waves are detected where these components are the highest.
Moreover, reducing the dictionary makes the processing
faster as we have less choices to describe the signal.

The outline of the paper is the following. The restricted
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matching pursuit (RMP) technique is presented in section
II. The proposed technique is then evaluated on several EEG
recordings manually marked in section III and the results are
compared to those obtained by the classic method presented
in [6] and discussed.

II. RESTRICTED MATCHING PURSUIT

The purpose of the method proposed is to detect SSW in
the EEG signal by describing this signal only with wave-
forms reproducing the SSW characteristics using matching
pursuit.

A. Matching Pursuit

Matching pursuit (MP) has been introduced by Mallat and
Zhang in [5]. This algorithm gives an approximation of a
signal y as a linear combination of waveforms chosen in
a redundant dictionary D. In the first step of the MP, the
waveform w0 that best fits the signal x is selected from D.
In each consecutive step, the waveform wn that best fits the
residual signal left after subtracting all previous iterations
Rn(y) is selected. At each step, the waveform selected is
the one with the largest scalar product |〈wn, Rn(y)〉|. This
algorithm is described in (1). R0(y) = y

Rn(y) = 〈Rn(y), wn〉wn +Rn+1(y)
wn = arg maxwi∈D|〈wi, Ri(y)〉|

(1)

The process is iterated until some stopping criterion, such
as minimal residual energy threshold, is reached. After M
iterations, the approximation of y is given by (2).

y ≈
M∑
n=1
〈Rn(y), wn〉wn where wn ∈ D (2)

B. Restricting the dictionary

It has been demonstrated in [5] that Gabor functions
dictionary provides optimal joint time-frequency localization
that allows to describe y with a finite number of waveforms.
This dictionary has besides been used in [3] to accurately
describe EEG signals. So, we decided to use real valued
Gabor functions. These functions can be expressed as

gγ(t) = K(γ)e−π((t−u)/s)
2

cos(ω((t− u) + φ) (3)

where K(γ) is such as ||gγ || = 1 and γ = {u, ω, s, φ}.
As we want to restrict the dictionary to SSW pattern only,

several criteria are applied on parameters γ depending on the
SSW characteristics.

First, the frequency of SSW is between 0.5 and 2Hz. So,
the frequency parameter ω is defined according to (4) where
Fs is the sampling frequency of y and f ∈ [0.5; 2]Hz the
frequency of the Gabor function.

ω(f) = 2π
f

Fs
(4)

Then, a SSW should be only one oscillation (as we want
to detect each SSW separately) so the scale parameter s is
defined according to (5).

s(f) =
Fs

2f
(5)

Fig. 2. Example of Gabor functions for f = 1Hz, Fs = 100Hz and
z = 1s

Thereby, for each value f ∈ [0.5; 2]Hz corresponds a single
value of ω(f) and s(f).

Moreover, SSW should have both a negative and then a
positive deflection. So, we restrict the phase φ between π

3
and 2π

3 , as described in (6).

φ ∈ [
π

3
;
2π

3
] (6)

At last, SSW are centered around a zero crossing corre-
sponding to the passage from negative to positive deflection.
So, we want the Gabor functions to have the same negative
to positive zero-crossing. If z is a negative to positive zero-
crossing in the signal, the Gabor functions will be centered
around u(z, f, φ), according to (7).

u(z, f, φ) = z −
π
2 − φ
ω(f)

(7)

A dictionary D containing only waveforms corresponding
to SSW is then constructed using these different restrictions
as defined in (8) where γ(f, φ) = {u(z, f, φ), ω(f), s(f), φ}.
Fig. 2 shows an example of Gabor functions at f = 1Hz,
Fs = 100Hz and z = 1, 5s for three different phases. The
plain blue line corresponds to φ = π

3 , the dotted red line to
φ = π

2 and the point-dotted green line to φ = 2π
3 .

D = {gγ(f,φ)|f ∈ [0, 5; 2]Hz, φ ∈ [
π

3
;
2π

3
]} (8)

C. Sleep EEG slow wave detection

The MP algorithm is processed with the dictionary D de-
fined in (8) on EEG signal, filtered in the band [0.3; 45]Hz in
order to remove the continuous component and the artefacts
caused by electrical power lines. The MP is processed on
30s data segment with 2s of overlap in order to be sure to
detect SSW that could be at the end of the segment.

In order to decrease the computation time and because
SSW is always centered on a negative to positive zero-
crossing, only the negative to positive zero-crossing of the
signal are considered for the MP. The MP is processed until
the largest scalar product obtained is less than 40. This
criteria has been empirically chosen as it seems a satisfying
threshold to only detect SSW.
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For each waveform thus detected, the EEG signal is
filtered in the δ band in order to compute the features
described in [6]: length, amplitude and slopes of the EEG
waveform. The onset of the waveform is considered as the
first positive to negative zero-crossing before the centre of
the waveform and the offset as the first positive to negative
zero-crossing after. If the peak-to-peak amplitude is less than
75µV or the duration is less than 0.5s, the waveform is
rejected. Else, it is considered as a SSW.

III. RESULTS AND DISCUSSION

A. Material

The database used to evaluate the proposed method is
composed of polysomnographic recordings collected in 9
different young healthy adults during a night of undisturbed
sleep (around 8 hours) in usual laboratory conditions. The
database thus contains around 72 hours of EEG signals. SSW
have been visually scored by a registered sleep polysomnog-
raphy technologist. According to the guidelines, the analysis
was based on a frontal EEG channel (standard derivation
F3-A2) and, for the purpose of the present study, it was
performed regardless of the sleep stage. SSW have been
scored as trains of slow waves, which generally includes
several consecutive elementary waveforms. A total of 4780
SSW trains, the equivalent of 618 minutes, have been scored
from the whole database.

The PRANA software package (PhiTools, Strasbourg,
FRANCE) has been used for the visual scoring of sleep
stages and EEG slow waves, as well as for the automated
detection of EEG slow waves using a software plug-in
based on a classical algorithm ([5,7]). The PRANA software
developer kit, available as a MATLAB toolbox, has been
used to implement and test the proposed method.

SSW detected by the proposed method were compared
one by one to the slow waves trains scored by the specialist.
If a detected SSW is part of a scored SSW train, the
detected wave was considered as a correct detection or true
positive (TP), else it was considered as false detection or
false positive (FP). Scored SSW trains during which no
SSW has been detected by the algorithm were considered
as missed SSW or false negatives (FN). Several measures
were then computed to evaluate the accuracy of the detection.
The true positive rate (TPR) or sensibility, which is the rate
between the number of SSW correctly detected and the total
number of SSW to detect, was computed according to (9).
The positive predictive value (PPV) or precision, which is the
rate between the number of SSW correctly detected and the
total number of SSW detected, was computed according to
(10). The closer to 1 these two measures, the more accurate
the detection.

TPR =
TP

TP + FN
(9)

PPV =
TP

TP + FP
(10)

Nevertheless, as SSW are scored by the expert as trains
of slow waves that generally includes several SSW, the TPR

TABLE I
RESULTS OF THE AUTOMATED SSW DETECTION PERFORMED WITH THE

RMP METHOD

Subject 1 2 3 4 5
TPR 96,5% 97,7% 99,2% 96,2% 98,5%
PPV 74,5% 76,9% 78,2% 35,3% 66,7%
CD 69,8% 71,7% 82,9% 68,7% 74,5%

Subject 6 7 8 9 Overall
TPR 98,3% 98,9% 98,9% 99,2% 98,2%
PPV 66,8% 73,9% 70,9% 66,6% 67,8%
CD 78,8% 87,9% 79,6% 79,4% 77,0%

TABLE II
RESULTS OF THE SLOW WAVES DETECTION PERFORMED WITH THE

METHOD [6]

Subject 1 2 3 4 5
TPR 97,8% 88,9% 99,8% 93,3% 98,9%
PPV 63,0% 70,5% 68,2% 32,5% 60,8%
CD 53,1% 33,1% 75,2% 52,8% 53,3%

Subject 6 7 8 9 Overall
TPR 99,9% 97,9% 98,7% 91,4% 96,3%
PPV 59,7% 62,7% 62,5% 44,6% 58,3%
CD 72,2% 52,4% 54,5% 36,4% 53,7%

score might not be completely relevant as detecting one SSW
or several ones in a scored train would give the same result.
So, the common SSW duration (CD) was also computed
according to (11). This feature is the rate between the total
duration of SSW correctly detected and the total duration
of SSW scored by the specialist. In (11), T is the set of
SSW correctly detected by the proposed method and E the
set of SSW scored by the sleep technologist, D(sw) is the
duration of the SSW sw. The closer to 1 this measure, the
more accurate the detection.

CD =

∑
sw∈T

D(sw)∑
sw∈E

D(sw)
(11)

B. Results

The RMP method has been applied on frontal EEG
channel (F3-A2) on the whole database. The results obtained
are shown in table I. RMP method correctly detected 23658
SSW for 9814 false detections and 382 SSW missed.

In order to compare and discuss these results, the earlier
method presented in [6] and considered as a reference has
also been applied on F3-A2 channel on the database. This
method is labelled as Massimini method in the following.
It consists in the application of the amplitude and duration
criteria presented in fig. 1 on the EEG filtered in [0, 2; 4]Hz.
The results are shown in table II. The Massimini method
correctly detected 19156 SSW for 11999 false detections and
517 SSW missed.

The results concerning the number of SSW correctly and
wrongly detected by both method are summarized in table
III.
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TABLE III
NUMBER OF SSW DETECTED AND MISSED BY BOTH METHOD

Method RMP Massimini
Correct 23658 19156

False 9814 11999
Missed 382 517

C. Discussion

First, it can be seen from table I that the RMP method
obtains a very high rate of correct detections (TPR) with an
overall percentage of 98,2% correct SSW detections and no
less than 96% for each subject. This means that the proposed
method is very accurate to detect SSW. The precision (PPV)
of the method is high with an overall percentage of 66,7%
which significates that 2 SSW detections out of 3 are correct.
Exept for subject 4, the precision rate for each subject is
even higher and reach a maximum of 78,2% for subject 3.
Then, the common duration (CD) is also very good with an
overall percentage of 77,0%. The results for each subject
varies between 70% and 80%. This point shows that around
3 quarters of the total duration of SSW scored by the sleep
expert are correctly detected. It is interesting to mention that
the inter-experts variability for sleep scoring is about 20%
([2]) which is close to the difference we obtain with the
expert scoring of SSW.

The results in table II show that the Massimini method
obtains similar performance in terms of correct SSW detec-
tion with an overall TPR=96,3%. Nevertheless, individual
results show more variability than the RMP method with
TPR varying from 89% to 99%. Moreover, overall precision
and common durartion obtained with Massimini method are a
bit low with only 58,3% of precision and 53,7% of SSW total
duration scored by the sleep technologist correctly detected.
This points out that almost 1 out of 2 detections is false and
only half of the SSW are detected in each train scored by
the expert.

The comparison between results obtained with the two
methods shows that the RMP algorithm provides more accu-
rate SSW detections. Although the percentages of SSW cor-
rectly detected with both methods are similar, the precision
of the RMP-based detection is better (increase of 10 points)
and the common duration rate (CD) is significantly better
(increase of 20 points) with the proposed method. These
results are confirmed by table III. It can be seen in table
III that the RMP algorithm detected 4500 more correct SSW
than the Massimini method for 3100 less false detections and
120 less SSW missed.

These better results can be explained by the fact that the
RMP method is closer to the way the sleep expert processes
the data to score SSW. The sleep expert looks at the EEG
data in the whole [0.3; 45]Hz band as the proposed method
and not only in the δ band as in [6]. In this way, false
detections that might be due to a distortion of the filtered
signal are avoided. Moreover, the proposed method is less
sensitive to the zero-crossings that defines each phase in the
Massimini method as only the central zero-crossing matters

in the RMP algorithm. At last, another advantage of the
RMP-based detection is that it mainly focuses on the shape
of the wave to look like a SSW instead on focusing only on
duration and amplitude criteria.

IV. CONCLUSIONS AND FUTURE WORKS

An original method to detect sleep EEG slow waves has
been presented in this paper. This method uses a Matching
Pursuit algorithm with a reduced dictionary limited to “slow
waves look alike” waveforms in order to describe the EEG
signal only in terms of slow wave properties. The method has
been validated on a database of human sleep EEG recordings
form 9 different subjects, visually analyzed by a registered
sleep technologist. The results of automated detection using
the proposed method show very high performance with an
overall correct detection rate of 98% and a precision of
67%. The algorithm was able to detect 77% of the total
duration of SSW scored by the expert. The sensibility and
precision of our method are superior to those of the method
for automated detection proposed earlier and considered as
a reference ([6]).

This method can still be improved in terms of precision
as 1 out 3 waveforms detected was not a slow wave. Future
clinical implications include the diagnosis of patients with
sleep disorders as well as the automatic sleep detection and
analysis of laboratory and ambulatory sleep recordings.
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