
  

  

Abstract - The control of powered upper limb prostheses 
using the surface electromyogram (EMG) is an important 
clinical option for amputees.  There have been considerable 
recent improvements in prosthetic hands, but these currently 
lack a control scheme that can decode movement intent from 
the EMG to exploit their mechanical dexterity.  Pattern 
recognition based control has the potential to decode many 
classes of movement intent, but is confounded when using 
the prosthesis in varying positions during activities of daily 
living.  This work describes the degradation that can occur 
when using pattern recognition in varying positions, during 
both static positioning tasks and dynamic activities of daily 
living.  It is shown that training with dynamic activities can 
greatly improve positional robustness for both static and 
dynamic tasks, without requiring a complex and lengthy 
training session.   

I. INTRODUCTION 
OWERED upper limb prostheses controlled using the 

surface electromyogram (EMG) have been available for 
many decades, allowing autonomous control of limb 
positioning and hand manipulation.  The required muscular 
contractions are often similar to those needed to articulate an 
intact limb. Although it has been found that myoelectric 
prostheses can be clinically practical in upper limb 
prosthetics, the limited dexterity of control is often cited as 
the primary reason for rather low acceptance of these 
devices [1]. 

Conventional myoelectric control schemes use an 
amplitude measure at each electrode site (such as the root 
mean square or mean absolute value of the EMG) to 
quantify the intensity of contraction in the underlying 
muscles.  Control is elicited by mapping this activity to the 
desired prosthetic function.  If more than one device is to be 
used, mode switching is often the only strategy, using a 
hardware switch or co-contraction to direct control to an 
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elbow, wrist or hand.  This method of control is often slow 
and counterintuitive [2]. 

This has motivated the use of a pattern recognition 
approach to myoelectric control.  By using multiple EMG 
sites, effective feature extraction and multidimensional 
classifiers, it is possible to discriminate many more classes 
of motion than with conventional control. The use of EMG 
pattern recognition has been shown to greatly improve the 
dexterity of control in upper limb prostheses and, through 
the efforts of many academic and commercial initiatives, it 
is nearing clinical viability [3].   

There are a number of factors that currently challenge 
pattern recognition control in clinical settings, including 
variation in electrode placement [4,5] and impedance, and 
the effects of socket loading and limb position [6].  This 
work addresses the degradation caused by limb position 
during static and dynamic tasks, and describes an effective 
training strategy to minimize the effects. 
 

II. METHODOLOGY 

A. Experimental Protocol 
EMG data corresponding to eight classes of motion were 

collected from five right-handed, healthy, normally-limbed 
subjects (4 male, 1 female). All experiments were approved 
by the University of New Brunswick’s Research Ethics 
Board. The subjects were fitted with a cuff made of thermo 
formable gel (taken from a 6mm Alpha liner by Ohio 
Willow Wood) that was embedded with eight equally spaced 
pairs of stainless steel dome electrodes.  The cuff was placed 
around the right forearm, proximal to the elbow, at the 
position with largest muscle bulk. A reference electrode was 
placed over the back of the hand.   

The eight channels of EMG were differentially amplified 
using remote AC electrode-amplifiers (BE328, by Liberating 
Technologies, Inc), and low pass filtered with a cutoff 
frequency of 500Hz.  Finally, data were acquired using a 16 
channel 16-bit analog-to-digital converter (USB1616FS 
from Measurement ComputingTM) sampling at 1kHz. 

Subjects were prompted to elicit a set of contractions 
consisting of the following eight classes of motion: wrist 
flexion/extension, wrist pronation/supination, hand open, 
power grip, pinch grip, and a no motion (i.e. rest) class.  
Subjects were encouraged to perform contractions at a 
repeatable ‘medium’ force level and given rest periods 
between trials to minimize fatigue.   

These sets were repeated during three sessions, each 
involving a different form of positional variation. 
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Session 1: Static Positions  

The eight motion classes were sustained while holding the 
arm in the following positions. 
 
  P1: ‘Neutral’, arm hanging at side 

  P2: ‘Drinking’, as if holding a cup up to one’s mouth 

  P3: ‘Table Top’, as if reaching for something ahead 

  P4: ‘Cupboard’, as if reaching for something up high 

  P5: ‘Bending’, as if picking something up from ground 

 
 

P1 P2 P3 P4 P5 

    
Figure 1: Static Limb Positions 

 
Four sets of contractions were collected in each of the static 
positions.  Contraction classes were held for 3 seconds, with 
3 second inter-class delays.  Two of these sets were used for 
training and two were used for testing. 
 
Session 2: Activities of Daily Living 

A more meaningful assessment of the usability of a 
control system is its accuracy while performing functional 
tasks: activities of daily living (ADL).  The following ADLs 
were completed while holding each of the eight classes of 
motion: 

 
A1: P3 to P2 (Table Top to Drink) 

  A2: P1 to P3 (Neutral to Table Top) 

  A3: P1 to P4 (Neutral to Cupboard) 

  A4: P1 to P5 (Neutral to Bending) 

A1  A2 

 
to 

 
 

 
to 

       

A3  A4 

 
to 

 
 

 
to 

Figure 2: ADL Motions 
 
Each ADL was repeated for 2 sets of motion classes.  Each 
repetition took 4 seconds with a 3 second inter-motion delay. 
The difference in repetition length between the sessions was 
chosen so that the total amount of training data was similar 
for each method. 

 
Session 3: Dynamic Training Motions  

It was hypothesized that dynamic training data would be a 
more effective paradigm for training a system that would be 

used when performing ADLs.  Rather than have the users 
perform the ADLs explicitly, two generic dynamic motions 
were defined that would encompass the positional variation 
experienced during ADLs.  The motivation for this was to 
simplify the training process. Executing all eight motions 
during each ADL would be time-consuming; having only 
one or two dynamic trials would take much less time.  These 
dynamic training motions were: 
 

D1: Humeral rotation starting in P2 

D2: P1, P5, P4, P1 (as if picking up something from the 

floor and lifting it to a cupboard) 

D1 

 
to

 
to 

 

D2 

to to 
 
to 

Figure 3: Dynamic Training Motions 
 
For each of these dynamic training motions, two sets of 
contractions with 8 second repetitions and 3 second inter-
repetition delays were collected.   
 

B. Data Processing 
In order to maintain a clinical focus, a control scheme 

similar to the one described by Englehart and Hudgins [7] 
was used.  They showed that a simple time-domain (TD) 
feature extraction combined with a linear discriminant 
analysis (LDA) classifier could be used as an effective real-
time control scheme for myoelectric control.  Because of its 
relative ease of implementation and high performance, this 
system has been widely accepted in the research community, 
and is beginning to gain traction in clinical settings [8].      

EMG data were notch filtered at 60Hz using a 3rd order 
Butterworth filter in order to remove any power line 
interference.  Data were segmented for feature extraction 
using 200ms windows, with processing increments of 50ms.    

 

III. RESULTS 

A. Static Training Results 
Almost without exception, the approach to pattern 

recognition control has been to train with statically-held 
contractions.  Nominally, these static contractions have been 
performed in a neutral position.  When training in static 
positions, the effect of varying position has been shown to 
degrade accuracy [6].  This experiment has replicated these 
results, and extended the inquiry to determine the effect of 
position when performing ADLs. 

Figure 4 illustrates that when training and testing in the 
same static position, very good performance results, with 
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classification error ranging between 2.2 % (P1: ‘Neutral’) 
and 5.5% (P3: ‘Table Top’).  The error degrades 
considerably in most cases when testing in a different 
position than the training set (looking off of the main 
diagonal).  It is evident that pooling data from all positions 
in the training set (PALL) is very effective, resulting in even 
lower error than training in the appropriate position.   

When testing with the ADL data, it is clear that static 
training performs poorly indicating that, even when pooling 
data from all positions, the static data is just not 
representative of the dynamic ADL data. 

 
Static Training Position 
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2.2 10.9 6.2 6.0 3.8 1.6 

 22.3 4.3 11.9 12.0 19.5 3.7 

9.1 9.4 5.2 7.1 7.2 2.0 

19.9 15.4 20.1 3.9 17.8 3.7 

3.7 11.9 6.0 6.0 3.5 1.9 

A1 28.4 15.2 19.9 16.9 26.9 12.1 

A2 22.7 24.5 21.0 17.5 26.7 14.8 

A3 28.1 25.6 27.6 20.5 29.3 18.2 

A4 11.8 20.1 13.9 12.5 13.6 8.6 

 
Figure 4: Inter-position accuracy (percent) when training with 
static positions (PALL denotes training with all static positions 

pooled) 
 

B. Dynamic Training Results 
The same analysis was performed when using the dynamic 

training data.  The results in Figure 5 demonstrate that the 
dynamic training data allow the static position data to be 
reasonably well classified, but hold a clear advantage over 
static training when classifying the ADLs. 

The relative efficacy of static versus dynamic training can 
be seen more clearly if the results across all positions (P1-
P5) are averaged, as shown in Figure 6.  For the static 
testing data (blue), the average error is high when training in 
individual static positions, and low when pooling the static 
positions (2.6%). The dynamic training data performs 
reasonably well on the static data if both D1 and D2 are 
included (4.6%). 
 
 

 
 
 
 

   Dynamic Training Motion       

D1 D2 D1-2 

Te
st

 P
os

iti
on

 / 
M

ot
io

n 

10.9 5.0 3.5 

6.4 11.9 4.7 

8.2 6.7 4.3 
 

12.9 9.6 6.8 
 

9.7 4.4 3.9 

A1 12.2 12.2 7.7 

A2 18.0 10.1 8.6 

A3 17.2 7.9 7.9 

A4 16.6 6.1 5.5 

 
Figure 5: Inter-Position/Motion error (percent) when training 

with dynamic motions and testing in static positions 
 
 When testing with the ADLs, it is clear that when training 
with the static position data, the results are very poor; even 
with the pooled static position data.  When training with the 
dynamic data, the results are much better, particularly with 
D2 and D1-D2. 

 

 
Figure 6: Comparison of all static and dynamic results 

 
 

C. Examining the Dynamic Position Effect  
The representation of EMG is in a high-dimensional 

feature space (eight channels x four features/channel = 32 
features), and changes due to position are difficult to 
visualize.  The feature that carries the most discriminant 
information is the mean absolute value (MAV), and 
therefore, one can simplify the observation of positional 
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effects by looking at only this feature.  Figure 7 depicts the 
MAV from each of eight EMG channels as a function of 
time (or excursion along the reaching motion A3).  Also 
shown are the classifier decisions when using static training 
in the neutral position (dashed) and with dynamic training 
(solid blue).   
 In Figure 7a, the subject is attempting to raise the arm 
while intending to elicit ‘no motion’ in the prosthesis.  
Beginning from a neutral position, the MAV on all channels 
is low, as would be expected when performing ‘no motion,’  
but as the arm is raised, two channels experience a 
noticeable increase in MAV as the forearm muscles must 
stabilize the limb against gravity.  With static training (from 
the neutral position), the classifier begins to erroneously 
classify the motion as wrist supination as the MAV 
increases.  With dynamic training, no errors occur, as the 
classifier has been trained with ‘no motion’ data while the 
subject was actively positioning the limb. 
 Figure 7b shows the same scenario, while the subject 
attempted to extend the wrist while reaching.  The MAV 
features from this active class are over the course of the 
reaching motion; the classifier trained on static data 
produces erratic results, while the classifier trained on 
dynamic data performs well until the final portion of the 
reaching motion. 
 

a) 

b) 

Figure 7: Example of MAV feature trajectories (top) during 
reaching motion A3 and resulting class decisions (bottom) when 
training with static neutral position P1 (solid line) with dynamic 
training motion D2 (dashed line).  The target classes were a) no 

motion, and b) wrist extension 
 

IV. DISCUSSION 
These results demonstrate that the performance of a 

pattern recognition control system is greatly influenced by 
the position of the limb and whether the limb is still or 
moving while eliciting the desired movement intent. 
 If a prosthesis is to be controlled exclusively by producing 
EMG commands while holding the limb in the desired 
position, training with exemplars of the contractions in all 
desired positions works very well, as shown in Figure 6.  

This, however, imposes a rather extensive training session 
for the amputee.  In our sessions, training in all positions 
requires about 10 minutes, which is tedious for the user.   
 Using a prosthesis in this manner is also unnatural in 
some cases.  Many ADLs are more naturally performed 
when actively controlling the prosthesis while positioning, 
such as orienting the wrist while bringing a cup towards the 
mouth.  Static training does not perform well when the goal 
is to control the prosthesis while performing ADLs.  It has 
been shown that dynamic training is a much better approach.  
Training during a single dynamic motion (D2) can produce 
very good results for both static positioning and ADL tasks; 
combining two dynamic motions (D1 & D2) performs slightly 
better.  Training with a single dynamic task requires only 1-2 
minutes. 
 The next stage of this investigation will involve amputee 
users, wearing powered prostheses.  This will introduce a 
number of additional factors, including the variation in 
musculature, possibly altered motor pathways, socket 
loading and the inertia/vibration caused by powered 
components. Our goal is to establish best practices to 
provide control that is robust by incorporating meaningful 
variations into the training session.   

Our experience is that a training session has poor 
resilience from day to day.  That is, a system trained on one 
day may not perform well the next, likely due to electrode 
position and skin impedance.  Consequently, it is important 
that the time and complexity of the training session is 
sufficiently low enough to be performed easily by the user 
on a daily basis.   
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