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Abstract—Automatic tracking of movement disorders in 

patients with Parkinson’s disease (PD) is dependent on the 

ability of machine learning algorithms to resolve the complex 

and unpredictable characteristics of wearable sensor data. The 

challenge reflects the variety of movement disorders that 

fluctuate throughout the day which can be confounded  by 

voluntary activities of daily life. Our approach is the 

development of multiple dynamic neural network (DNN) 

classifiers whose application are governed by a rule-based 

controller within the Integrated Processing and Understanding 

of Signals (IPUS) framework. Solutions are described for time-

varying occurrences of tremor and dyskinesia, classified at 1 s 

resolution from surface electromyographic (sEMG) and tri-

axial accelerometer (ACC) data acquired from patients with 

PD. The networks were trained and tested on separate datasets, 

respectively, while subjects performed unscripted and 

unconstrained activities in a home-like setting.   Performance of 

the classifiers achieved an overall global error rate of less than 

10%.  

I. INTRODUCTION 

Attempts at developing a wearable device that can 

automatically track changes in the presence and severity of 

involuntary movement disorders have focused primarily on 

Parkinson‟s disease (PD). The relatively wide variety of 

motor disorders associated with the disease fluctuate 

throughout the day, making monitoring by paper-based 

instruments, such as motor diaries [1], difficult and 

ineffective. For effective therapeutic management, the 

clinician must determine the evolving temporal pattern of the 

patient's motor status and relate it to their use of anti-

Parkinson‟s medication or deep brain stimulation (DBS) 

settings. Acquiring this information from a wearable sensor 

device is particularly challenging in these patients because 

the type of motor disorder may not only change rapidly over 

time, but may also fluctuate in intensity and body location 

throughout the day [2,3]. A wearable sensor solution must be 
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non-intrusive (e.g., not interrupt daily activities), non-

cumbersome (e.g., use a minimal number of sensors), 

sensitive to change (e.g., report occurrence and severity of 

multiple disorders on a per-second basis), and accurate (e.g., 

provide results that are consistent with observations by 

movement disorder experts).  Our goal is to achieve these 

aims using classifiers that do not require training data from 

the patient being tested. 

II. PREVIOUS WORK 

Given the proliferation of wearable sensor technology and 

improvements in machine learning algorithms [4], the 

potential exists to develop systems that allow clinicians to 

detect movement disorders in sensor-wearing patients 

remotely and without intrusion. Despite this prospect, no 

currently available technology has produced a 

comprehensive system to monitor PD movement disorders 

with the desired time resolution and accuracy. Nevertheless, 

several research groups have proposed solutions to monitor 

individual disorders relying in part on the patient‟s 

performance of scripted activities or standardized tests. Such 

tests interfere with the patient‟s ability to carry out activities 

of daily living, and place an undue burden for timely 

administration on the patient. Accordingly, they do little to 

improve upon paper-based instruments. Our proposed 

system, by entirely avoiding the use of scripted activities and 

standardized tests, would thus represent an important 

improvement over the existing state of the art. 

The detection of dyskinesia from ACC sensors worn by 

PD patients carrying out scripted activities in a randomized 

order was considered by Keijsers et al. [6] using static neural 

networks, however the activities were scripted, did not 

include tremor or other disorders,  and the temporal 

resolution was limited to 1 minute.  

In previous work by Salarian et al. [5], the detection of 

tremor was considered on a per-second basis using triaxial 

gyroscope signals from subjects performing a scripted 

sequence of activities such as tooth-brushing while standing 

and eating while sitting. Their algorithm yielded 99.5% 

sensitivity on tremor-only data and 94.2% specificity on 

tremor-free data, based on video annotation. This algorithm, 

however, was not designed to discriminate between tremor 

and dyskinesia and was therefore not tested on datasets 

containing instances of dyskinesia. 
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III. APPROACH 

Novel data acquisition and signal processing technologies 

for resolving time-sensitive signal complexities were 

developed to achieve our aims.  The following list 

summarizes the key components of the approach:  

 Hybrid sensor technology was developed to provide 

both sEMG and tri-axial ACC data from a single, 

wireless, miniaturized sensor (Trigno™, Delsys Inc). 

The combined use of these measurement modalities is 

unique in this application.   

 A single hybrid sensor is located at the distal portion of 

each symptomatic limb, to track motor disorders specific 

to that limb. This approach minimizes the overall 

number of sensors required and provides a mechanism 

for adapting the number of sensors to the patient‟s 

clinical signs and capabilities.   

 Machine learning algorithms, implemented in the form 

of dynamic neural networks (DNNs) are assigned to 

each sensor and  separately designed and trained to 

identify specific movement disorders or mobility states 

(e.g. sitting, standing, walking). We used dynamic (as 

opposed to static) neural networks, which have served as 

the de facto standard to date for this application [7], to 

learn how features of the movement disorders change 

over time.   

 Multi-window signal processing is used to efficiently 

compute input features of the DNNs.  

 Parameterized Machine Learning algorithms are 

incorporated into the framework of a rule-based 

controller within the Integrated Processing and 

Understanding of Signals (IPUS) framework [8].  

 Features from the sEMG and ACC signals are calculated 

to provide inputs to the DNNs, as summarized in Table I 

[9]. 

 

A pictorial overview of the approach is summarized in 

Fig. 1. Raw signals from the ACC and sEMG sensors are 

processed using a multi-window approach to create features 

of these signals, which in turn are fed as inputs to the initial 

mobility and motor sign DNNs. These DNNs produce 

preliminary estimations of the motor outcomes and mobility 

states. Based on these results, the rule-based IPUS controller 

adjusts the parameters that drive the DNNs, and activate 

other DNNs as needed to adapt to changes in mobility state. 

 TABLE I 

INPUT FEATURES FROM SEMG AND ACC SIGNALS 

Feature Derivation Description 

ACC lowpass 

energy 

Energy of ACC signal after 

application of 2.5 Hz 

lowpass filter 

Amount of energy 

attributable to voluntary 

movement 

ACC highpass 

energy 

Energy of ACC signal after 

application of 2.5 Hz 

highpass filter 

Amount of energy 

attributable to 

involuntary movements 

ACC lag Lag of first peak (not at 

origin) of the 

autocorrelation of ACC 

corrected signal 

Dominant frequency of 

the involuntary 

movement 

ACC ratio Ratio of height of first peak 

(not at origin) to heigh of 

peak at origin in 

autocorrelation of ACC 

corrected signal 

Percentage of energy 

due to involuntary 

movement that is within 

the range of the 

dominant frequency 

sEMG RMS RMS energy of the sEMG 

signal 

Amount of muscle 

activity 

sEMG lag Lag of the first peak (not at 

origin) compute as an 

absolute value from the 

autocorrelation of the sEMG 

signal 

Dominant frequency of 

the periodic 

components of the 

muscle activation 

sEMG ratio Ratio of height of first peak 

(not at origin) to height of 

peak at origin in the 

autocorrelation of the sEMG 

signal 

Amount of energy 

present within the 

dominant frequency of 

the sEMG signal 

IV. METHODS 

Two groups of subjects were tested: one (n=11 patients) 

provided a data set for algorithm development (Training  

Set) and the other (n=4 Controls; n= 8 patients) provided 

data for testing the algorithms (Test Set). Separation of the 

databases was implemented to develop and test classification 

algorithms that do not require a priori training from the 

patient being monitored. Patients were referred with mild to 

moderately severe categories of Parkinson‟s disease [Hoehn-

Yahr stage II – III while On, and Hoehn-Yahr stage III to IV 

while off] and a mean disease duration = 13.2 years. All 

were taking levodopa medication and presented with mild to 

severe ratings of tremor (based on Unified Parkinson‟s 

Disease Rating Scale (UPDRS) [10] and dyskinesia 

complicated by motor fluctuations (based on the modified 

Abnormal Involuntary Movement Scale (m-AIMS) [11]). 

Three channels of tri-axial ACC signals, and one channel 

of sEMG signals were recorded from each of four hybrid 

sensors placed on the distal portions of the upper and lower 

extremities. Sensor and video data were recorded 

continuously for 4 hours (sufficient to capture a complete 

On-Off medication cycle) while the subject carried out 

unscripted and unconstrained activities in a 100 meter
2
 

laboratory furnished to simulate a studio apartment. The 
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Fig. 1. Block diagram of the technology framework of the proposed 

system. Features are calculated across multiple time and frequency 

windows of the ACC and sEMG signals. These features are then fed into 

DNNs trained to detect the patient‟s mobility and motor states. The 

parameters controlling these DNNs are set by a rule-based IPUS controller, 

and adjusted according to the system outputs. 
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resulting videotapes were annotated by individuals trained in 

identifying PD motor signs using standardized methods. 

Tremor severity was scored based on Items 20, 21 of the 

Motor Examination section of the UPDRS [10] and 

dyskinesia severity was scored based on the m-AIMS scale 

(m-AIMS) [11]. Ratings were recorded for each second of 

videotaped data and were recorded separately for each of the 

four limbs. 

V. RESULTS 

 The DNN for detecting tremor was designed using a 

multi-layered neural network with a hidden layer of 4 nodes. 

The DNN for detecting dyskinesia was designed using a 

multi-layered neural network with a hidden layer of 2 nodes. 

The hidden nodes and the output node for both these DNNs 

use the weights of a 5-point FIR filter applied to time-

delayed and time-advanced versions of their respective input 

data. The input nodes for the DNNs are features extracted 

from 2-second windowed sections of the sEMG and ACC 

sensor signals. Details of these DNNs can be found in [9]. 

In total, the training set for tremor and dyskinesia was 25 

minutes long, including 100 instances of tremor and 100 

instances of dyskinesia. The training set was carefully chosen 

to be representative of the different manifestations of the 

disorder; for instance, samples chosen to represent tremor 

included samples with different amounts of movement, 

different frequencies, and different severity levels of tremor. 

The following results are from the test database of 

approximately 29.5  hours of data from the eight PD patients, 

and 15.5  hours of data from the four controls. The testing 

was accomplished without subject-specific training; that is, 

no additional training data was required to accommodate the 

addition of new patients or controls in the testing database.  

Table II summarizes the sensitivity, specificity, and global 

error rate results of testing the DNNs to detect tremor and 

dyskinesia in the test sample, based on data from a single 

hybrid sensor from a symptomatic limb.  
TABLE II 

DNN TESTING RESULTS 

Disorder/

Site 
Tested On Sens Spec GER 

Net 

Duration 

Tre/Arm 8 Patients 93.8% 91.9% 7.2% 29:13 

Tre/Leg 8 Patients 88.6% 94.6% 8.4% 29:13 

Tre/Arm 4 Controls --- 93.7% 6.3% 15:18 

Dys/Arm 8 Patients 90.0% 91.3% 9.4% 29:13 

Dys/Arm 4 Controls --- 95.5% 4.5% 15:18 

Mean sensitivity (Sens), specificity (Spec), and global error rate (GER) for 

identification of tremor (Trem) and dyskinesia (Dys) from DNN algorithms 

that processed summary sEMG and ACC data recorded from PD patients 

and control subjects.  

The table differentiates between upper and lower limb results 

to demonstrate that the algorithms work with similar 

effectiveness regardless of which limb is symptomatic. 

The DNNs were also able to identify the different severity 

levels of tremor and dyskinesia from this same data set, at 

sensitivity and specificity levels well above 90%, 

respectively (Table III). Severity levels varied across 

subjects, with severe levels of tremor and dyskinesia less 

prevalent in these subjects than mild and moderate severity 

levels.  
TABLE III 

SEVERITY DETECTION RESULTS 

Category Sens Spec 
Hours 

of Data 

Number of 

Subjects 

Mild Trem 97.2% 97.8% 1:56 5 

Mod Trem 95.2% 97.1% 1:14 4 

Sev Trem 96.3% 99.3% 0:26 3 

Mild Dys 93.9% 95.5% 0:52 5 

Mod Dys 91.9% 94.6% 0:46 5 

Sev Dys 95.0% 98.6% 0:13 4 

Mean sensitivity (Sens) and specificity (Spec) are shown from 

summary data for identifying mild, moderate (Mod), and 

severe (Sev) levels of tremor (Trem) and dyskinesia (Dys). 

 

The results described above were from the Motor 

Outcome DNNs directly and did not include automatic 

mechanisms for adaptively invoking different signal 

processing algorithms and different DNNs in a situation-

dependent manner, as was depicted in Fig. 1. There are 

instances, however, when such complexities warrant these 

procedures, as demonstrated in Fig. 2. Three ACC signals 

from a patient with tremor, one in a region with rapid 

voluntary movement, one in a region with gradual 

movement, and one in a region with no movement are 

shown. When the signals are unfiltered, as seen in the first 

row, the autocorrelation-based features have difficulty 

locating the tremor in the two regions with movement, 

whereas in the region with no movement, tremor is identi- 

 

Fig. 2. Examples of ACC signals, before and after high pass filtering at 

different cutoff frequencies (f ) from a patient with tremor during different 

levels of movement. The segments with checkmarks are those in which the 

autocorrelation function will produce evidence of tremor;  segments marked 

with X‟s produce no evidence of tremor due to the residual movement 

artifacts (left two columns) or elimination of slow tremors (bottom right). 

Therefore segments with different amounts of movement require different 

filters for optimal motor sign detection. 

 

fied. When a high pass filter with a cutoff frequency (f ) of 1 

Hz is applied (second row), we can virtually eliminate the 

gradual movement while leaving intact the slow-moving 

tremor seen in the region without movement. However, little 
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of the rapid movement has been eliminated, and the 

underlying tremor remains hidden. To correct this, we 

applied a highpass filter with a higher cutoff of 5 Hz (as seen 

in the third row). Though tremor is now clearly visible in the 

rapid movement and gradual movement regions, the slow-

moving tremor present in the region without movement has 

begun to deteriorate, suggesting that this cutoff is too high 

for the autocorrelation features to continue detecting tremor 

in this region. We can see, then, that movement disorders 

occurring during different amounts of voluntary movement 

(e.g., during different mobility states) will necessitate the use 

of multiple window sizes when computing the 

autocorrelation. This is a novel approach in that no previous 

research has been done in applying different window sizes to 

movement disorders based on the signal environment. 

Because our problem is a complex and highly unpredictable 

one, we will be unable to predict which window size will be 

needed at any given second, and therefore would require 

features to be calculated from the autocorrelation over one of 

several different time and frequency windows. To compute 

all of the features for all possible windows would of course 

be prohibitively computationally expensive. Thus, we are 

currently investigating the use of approximate signal 

processing to estimate the desired features of the 

autocorrelation [12]. Approximate signal processing seeks to 

increase the computational efficiency of an algorithm by 

sacrificing the quality of the algorithm‟s output. 

Multi-window signal processing will require the 

continuous switching between classifiers so that movement 

disorders can be detected with respect to various signal 

conditions. This switching will require a rule-based system in 

order to efficiently meet our stated goal of improving the 

local error rate in these transitional regions. To achieve this, 

we are integrating the IPUS framework into our signal 

processing scheme. The IPUS framework consists of a 

blackboard structure for storage, and a control architecture 

which uses the information stored on the blackboard [8]. It is 

this control architecture that will select which classifiers to 

apply based not only on the present signals but also, thanks 

to the discrepancy detection capabilities of IPUS, past 

classifier outputs that suggest a change in mobility state or 

disagreement between multiple classifiers.  

We are currently developing, encoding, and testing the 

rules that will be used by the IPUS framework within our 

system to adaptively invoke the various classifiers needed. 

Our results to date indicate that in long, stable regions (e.g., 

when the patient is sitting with no change in disorder state) 

the rules will be relatively simple to describe and implement. 

Conversely, more complex rules will be required in regions 

with transitions or discrepancies between classifier outputs. 

VI. CONCLUSIONS 

In this paper, we have presented a DNN solution for 

detecting two motor signs (tremor and dyskinesia) of 

Parkinson‟s disease using sEMG and ACC data from 

wireless miniaturized sensors that can be conveniently worn 

by PD patients. The DNN solution was found to have high 

sensitivity and specificity levels for second by second 

analysis of  tremor, dyskinesia, and normal movement  from 

test data of subjects who were not included in the training of 

the DNNs. We are in the process of combining these DNN 

solutions with a larger artificial intelligence framework to 

support adaptively-invoked signal processing solutions to 

resolve localized signal complexities. In our on-going 

research, we are also developing and evaluating these 

solutions for tracking other PD motor signs (such as 

bradykinesia, akinesia, freezing of gait) from sEMG and 

ACC wearable-sensor data.   
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