
  

 

Abstract—Integrated Processing and Understanding of 

Signals (IPUS) combines signal processing and artificial 

intelligence approaches to develop algorithms for resolving 

signal complexity. It has also led to development over the last 

decade and a half of software tools for supporting the 

algorithm design process. The signals to be analyzed are the 

superposition of temporally localized and temporally 

overlapping signal components from broadly defined signal 

classes pertinent to the given application. Resolving a signal’s 

complexity thus amounts to “decoding” it to reveal details of 

the specific signal components that are present at each point of 

a dense temporal grid defined on the signal. IPUS uses artificial 

intelligence techniques such as rule-based inference in 

conjunction with parameterized signal processing 

transformations to combat the combinatorial explosion 

encountered in any exhaustive search among the possible 

decoding answers for a given signal. Originally developed in the 

mid 1990’s for auditory scene analysis, the IPUS approach has 

since been refined and extended in the context of various 

applications. In this paper, we present an overview of IPUS and 

discuss why its latest developments significantly impact 

biosignal analysis in diverse rehabilitation applications. 

I. INTRODUCTION 

HERE is a tremendous need in various rehabilitation 

applications to develop algorithms that can resolve the 

complexities that arise from non-trivial superposition among 

temporally localized signal components belonging to 

broadly defined signal classes of natural origin. Important 

examples of such applications include the automatic 

detection of movement disorders from signal data acquired 

through wearable sensors [1], and the non-invasive 

assessment of neural mechanisms of motor control using 

surface electromyographic (sEMG) sensors [2,3]. It is 

critical in such applications for the algorithm to not 

“hallucinate” signal components by trying to “fit” the 

answer to an anticipated model (either deterministic or 

probabilistic) in opposition to the signal evidence. For 

example, an algorithm for analyzing sEMG signals should 

not declare a firing of a motor unit to have taken place at a 

particular time just because that would make the firings of 
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the motor unit conform to a more uniform firing rate; the 

algorithm must require that signal data is actually present 

that conforms to the action potential characteristics of the 

concerned motor unit, although it may be in superposition 

with data from other motor units. It is precisely such 

insistence on “model-free” decoding of complex 

superposition that makes biosignal analysis fertile ground for 

applying and refining the IPUS approach [4] to algorithm 

development. 

 In the IPUS approach, our primary concern is with the 

combinatorial complexity that can arise when a large 

number of classification problems have to be solved along a 

dense temporal grid defined on the signal under analysis. 

More specifically, the IPUS approach is designed to address 

situations where the classification problems are (1) mutually 

independent and (2) individually complex. Here, mutual 

independence of the classification problems means that 

solving any subset of them has no bearing on the potential 

solutions for the remaining ones (i.e., there is no model for 

interpolating between solved grid points). The complexity of 

each classification problem arises out of the fact that its 

corresponding signal data typically are comprised of a 

superposition of non-orthogonal signal classes. It follows 

that the computational cost of any algorithm for correctly 

(i.e., without error) solving such a classification problem is 

necessarily exponential in the number of signal classes. In 

IPUS, we combat such exponential complexity by allowing 

for a limited classification error rate over the entire set of 

grid points but strictly disallowing any interpolation between 

solved grid points. This permits computational cost per 

classification solution to be carried out in polynomial rather 

than exponential time while avoiding any hallucination 

implied by interpolation processes. 

 In Section II we illustrate the IPUS temporal grid used for 

biosignal analysis in two different applications. In Section 

III, we discuss how IPUS has been used to reduce the search 

combinatorics in those applications. In Section IV, we 

describe the important role played in IPUS system 

implementations by “rules” for the controlled application of 

parametric signal processing transformations. In Section V, 

we discuss a software environment for designing IPUS 

systems. The practical impact of IPUS in the field of 

biosignal analysis is reported in Section VI. We conclude the 

paper in Section VII. 

II. THE GRID 

Consider a sEMG signal analysis application in which a 

surface EMG sensor with K contact surfaces is placed on the 
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surface of the skin over a muscle of interest. The K-channel 

signal thus obtained may be expressed as: 
T
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Here each signal )(txk
 is the sum of contributions from N 

motor units: 
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The contribution )(, tf ki of the ith motor unit to the kth input 

signal channel is in turn given as: 
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Here ),(, ta ki 
 

represents the ith motor unit’s action 

potential shape (as a function of t) on the kth channel if the 

ith motor unit is said to have “fired” at time , and )(ip is 

a non-uniform impulse train representing the iF firing times  

(
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Combining (3) and (4), it follows that: 
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The signal analysis objective is to determine for the ith 

motor unit (



0 i N 1), all of its firing times, )(mi , 

and the corresponding action potential shapes, 

)),((, tma iki  . Each action potential shape is typically 5 to 

10 ms long and there are typically well over 500 action 

potentials in superposition in every second of data. 

To illustrate the use of the grid concept for the above 

sEMG signal analysis application, consider the 1 ms grid 

defined in Fig. 1 with respect to one of the K channels of the 

acquired sEMG signal. This grid helps divide the signal into 

1ms intervals. The 9ms interval around the grid point at 



n0  

ms is shaded in Fig. 1. Given the density of action potentials 

in the signal, on the average only one action potential’s 

major peak would fall in that interval. However, on the 

average it would be in non-trivial superposition with 8 other 

action potentials. We thus define the classification problem 

at grid point



n0  as that of determining which action 

potentials have their major peak in the gray interval while 

being in superposition with a number of other action 

potentials. The shape of each action potential constitutes a 

“signal class” and is to be determined directly from the 

sEMG signal by finding partially isolated instances of each 

class. When solving the overall classification problem, every 

action potential class is allowed to occur at every grid point, 

thus not imposing any temporal model on the firing pattern 

of any of the concerned motor units. 

 Another illustration of the IPUS grid concept is given in 

Fig. 2 for a wearable sensor application where the sensor is 

an accelerometer. Here the grid points are 1s apart. Each 

grid point represents a 1s interval during which signal 

classes corresponding to different types of movement 

disorders (tremor, dyskinesia, bradykinesia, etc.) are in 

superposition with voluntary movements. The classification 

problem is to determine the movement disorders present in 

the interval for each grid point while not allowing the 

answer at any grid point to constrain the answer at any other 

grid point. 

III. THE COMBINATORICS 

Let us first consider the search combinatorics involved in 

the sEMG signal application. Assume that the 1ms interval 

of any particular grid point contains the central portion of 

the major peak of just one action potential out of N that 

actually contribute to that interval. To correctly classify the 

motor unit centered in that interval, any algorithm would 

have to exhaustively consider the 



2N  possibilities for 

different combinations of motor units. Given that the signal 

classes are very similar to each other [2] and therefore non-

orthogonal, there is no hope of solving the classification 

problem in less than exponential time without incurring 

error. However, using the IPUS approach, we have recently 

[3] reduced the search space to a linear function of N but 

sacrificed the error rate to an average of 5% per motor unit. 

We have been able to accomplish this for N as large as 60 

and typically in the range from 20 to 40. The key to our 

IPUS solution is to employ heuristics (“rules”) for 

n0

time [s] 

Shaded 

Region
=

tremor

+ voluntary movement

 
Fig. 2. Illustration of the grid concept used in the wearable sensor 

application. Each grid point represents a 1s interval (shaded) during 
which over 100 categories of signal classes corresponding to different 

types of movement disorders (tremor, dyskinesia, bradykinesia, etc.)  

and voluntary movements may be in superposition. 
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Fig. 1. Illustration of the grid concept used in the sEMG signal analysis 

application. At a given point n0 on the grid, the system must determine 
which action potentials have their major peak in the shaded interval while 

being in superposition with a number of other action potentials. 
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controlling parametric signal processing methods with the 

aim of (1) keeping the least squares error per motor unit 

firing below an adaptive threshold and (2) ensuring that the 

answer at each grid point does not depend in any way on the 

answer for any other grid point. 

In the wearable sensor application, we have to deal with 

over 100 categories of signal classes corresponding to 

different limb movements and movement disorders found in 

Parkinson’s disease patients. In this case, our IPUS solutions 

[1] avoid exponential search by employing dynamic neural 

network (DNN) classifiers that are explicitly trained to allow 

for limited error rates. These DNN classifiers are in turn 

controlled by rule-based mechanisms that also ensure that no 

interpolation is employed in determining the answers at any 

of the grid points. 

IV. THE RULES 

A critical aspect of IPUS systems is a rule-based 

controller for context-specific invocation of parametric 

signal processing transformations. An example of the role 

played by the rule-based controller is shown in Fig. 3 for the 

wearable sensor application [1]. Raw signals from the 

sensors worn by the patient are windowed and processed to 

create features, which in turn are fed as inputs to 

parameterized DNN classifiers designed to determine the 

movement disorders and voluntary movements exhibited by 

the patient. The rule-based IPUS controller adjusts the 

parameters that drive the DNNs, and activates other DNNs 

as needed to adapt to changes in patient activity. The rules 

are crafted to ensure that no interpolation takes place in 

between different grid points.  

The parameters of the DNN are the analysis interval 

durations in time or frequency of various signal features. For 

instance, we have developed rules to shorten the time 

window used to calculate the input features for dyskinesia 

detection if the patient is walking. This is because the 

superposition of walking tends to obscure the sporadic 

movements that characterize dyskinesia. Additional rules are 

in place to adjust the cutoff of a highpass filter to separate 

involuntary from voluntary movement. This enables  

disorders such as tremor to be more accurately detected 

when voluntary movements are superimposed on them.  

V. THE SOFTWARE 

Over the years, we have developed a software 

environment for rapid IPUS system development. This 

software, based on an original design [5], offers a unique 

combination of features with respect to currently available 

design tools such as Matlab [6]. The environment presents a 

unified platform in which embedded signal processing 

applications which require sophisticated rule-based control 

can be designed, prototyped, tested, and implemented. In 

particular, this can be accomplished without the need for the 

labor intensive and error prone steps of manual format 

conversion and design reentry which are inevitable when 

incompatible tools are required for different stages of a 

system’s design cycle. An object-oriented design philosophy 

is employed throughout the environment, enabling 

applications to be constructed and tested in an incremental 

manner.  

The basic system model employed within the environment 

is that of a collection of independent signal processing 

algorithms which are invoked according to algorithmically 

defined rules. In addition to supporting standard signal 

processing architectures, this paradigm allows the 

development of systems which may alter their processing 

activities in response to conditions such as fluctuating 

system resources, requests from other system components, 

or the results of their own calculations. This flexibility is 

provided through the use of a control mechanism (or 

planner) based on the RESUN control paradigm [7]. The 

planner allows for both strategic (plan-based) and 

opportunistic (reactive) control to be applied. The strategic 

component is based on an application specific 

goal/plan/subgoal hierarchy (referred to collectively as 

control plans) in which all system goals are explicitly 

submitted to the planner and may be addressed by either a 

single algorithm or decomposed into an algorithmically 

defined sequence of further subgoals.  
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Fig. 3. Block diagram of the system designed for the wearable sensor application, providing an example of the role of the rule-based IPUS controller. In 

this system, the controller adjusts the parameters that drive the DNN classifiers, and activates other DNNs as needed to adapt to changes in patient activity. 
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VI. LATEST ACHIEVEMENTS 

Table I shows the progression of IPUS applications in the 

period from 1995 to 2011. We want to emphasize that over 

this decade and a half not only did the applications become 

more sophisticated but IPUS itself evolved as a signal 

analysis approach and as a set of tools and techniques. The 

earliest applications to the analysis of sound signals [4] and 

music signals [8] were limited to synthetic signals because at 

that time IPUS technology had not matured enough to deal 

with the complexities of real-life operating conditions. As 

indicated in Table I, the algorithms could deal with only 20 

to 30 signal classes and worked only in the total absence of 

noise. Furthermore, the conditions under which the systems 

operated were highly constrained. For example, the music 

analysis system assumed that the music is played on a 

specific instrument (violin) and is used to play only in 

accordance with the Classical Western scale. 

More recent applications of IPUS in the biosignals area 

have yielded considerable practical success, particularly 

when it comes to dealing with the analysis of real-life 

signals. In 2008, Nawab et al. [9] showed that the 

decomposition of indwelling EMG signals acquired under 

isometric force conditions from human subjects could be 

carried out with greater accuracy and greater motor unit 

yield than previously published systems. In particular, our 

IPUS-based decomposition of indwelling EMG signals is 

found to typically yield 10 to 15 motor units with an average 

accuracy of over 90% per motor unit firing pattern. The 

system performed at this level across a wide range of human 

subjects and muscle types.  

Similarly, in 2010, Nawab et al. [3] developed another 

IPUS-based system that can decompose EMG signals 

acquired from the surface of the skin during isometric 

muscle contractions to yield the firing patterns of as many as 

60 motor units per contraction with average accuracy around 

95%. Previous systems for surface EMG signal 

decomposition never succeeded in producing a yield of more 

than a few motor units. The higher yield allows a 

decomposition algorithm to be used to carry out much more 

sophisticated physiological studies, as exemplified by the 

recent work of De Luca and Hostage[10]. 

The most recent IPUS application reported by Cole et al. 

[1] is found to operate reliably in even more unconstrained 

conditions. In particular, movement disorders of Parkinson’s 

disease are classified on a per second basis with an error rate 

below 10% while the patient carries out unscripted and 

unconstrained activities of daily living. The signal to noise 

ratio tolerable by this system can be as low as 0.1. 

VII. CONCLUSION 

The analysis of complex biosignals often has to take two 

important factors into consideration. The first factor is that 

biosignals often result from the complex superposition of 

multiple underlying phenomena that are difficult to resolve 

without incurring exponential cost. The second factor is that 

in physiological and clinical applications a strong premium 

is placed on ensuring that the algorithm for resolving 

different components does not “impose” any model on the 

data; the algorithm has to avoid seeing in the data simply 

what it is programmed to see regardless of the data evidence. 

The IPUS approach and its associated tools and techniques 

have in the last few years had a major impact on this type of 

biosignal analysis in several rehabilitation related 

applications.   
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TABLE I 
PROGRESSION OF IPUS APPLICATIONS 

Date 
IPUS 

System 
# Signal 
Classes 

Signal 
Origin 

SNR 
Floor 

Operating 
Conditions 

1995 Sound 20+ Synthetic ∞ 
Highly 

Constrained 

1999 Music 30+ Synthetic ∞ 
Highly 

Constrained 

2008 iEMG 15+ Real-Life 10 
Moderately 

Unconstrained 

2010 sEMG 60+ Real-Life 1 
Moderately 

Unconstrained 

2010 PSM 45+ Real-Life 0.1 
Highly 

Unconstrained 

Since 1995, as the IPUS approach has evolved, IPUS systems of 

increasing complexity have been developed; they can now handle real-life 
signals representing highly unconstrained situations with signal to noise ratio 

(SNR) as low as 0.1 and handle signal classes in the upper 10’s. 
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