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Abstract— Functional magnetic resonance imaging (fMRI)
techniques enable noninvasive studies of brain functional ac-
tivity under task and resting states. However, the analysis of
brain activity could be significantly affected by the cardiac- and
respiration-induced physiological noise in fMRI data. In most
multi-slice fMRI experiments, the temporal sampling rates are
not high enough to critically sample the physiological noise,
and the noise is aliased into frequency bands where useful
brain functional signal exists, compromising the analysis. Most
existing approaches cannot distinguish between the aliased noise
and signal if they overlap in the frequency domain. In this work,
we further developed a kernel principal component analysis
based physiological removal method based on our previous
work. Specifically, two kernel functions were evaluated based on
a newly proposed criterion that can measure the capability of
a kernel to separate the aliased physiological noise from fMRI
signal. In addition, a mutual information based criterion was
designed to select principal components for noise removal. The
method was evaluated by human experimental fMRI studies,
and the results demonstrate that the proposed method can
effectively identify and attenuate the aliased physiological noise
in fMRI data.

I. INTRODUCTION

Cardiac and respiration-induced physiological noise is

one of the major noise sources that affect blood oxygena-

tion level dependent (BOLD) functional magnetic resonance

imaging (fMRI) data analysis. Particularly, with increased

magnetic field strength, the physiological noise becomes

more dominant than the thermal noise. Moreover, in most

multi-slice experiments, the fMRI temporal sampling rate is

not sufficient to critically sample the physiological noise.

Consequently, the noise is aliased into lower frequency bands

and overlapped with BOLD signal. The existence of the

aliased noise could significantly affect the fMRI data anal-

ysis, especially for functional network studies under resting

state, where a small “seed” region is usually selected first and

the average temporal profile of this region is used to detect

functionally connected regions via correlation analysis. If the

aliased physiological noise exists in the seed region, then it

is quite obscure if the correlated regions are functionally

connected to the functional signal in the seed region, or to

the noise. Therefore, it is necessary to remove physiological

noise prior to the detection of functional networks.

Various techniques have been developed to attenuate phys-

iological noise in fMRI data, such as the gating and/or syn-

chronization techniques [1], [2], navigator echo methods [3],
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and retrospective correction methods [4], [5]. These methods

have been shown to be effective in fMRI studies. However,

none of them can distinguish frequency-overlapping signal

and noise. In order to reduce the noise aliasing, Frank et

al. developed a method that treats the respiration-induced

noise as a global effect, and sampled for each slice in a

volume [6]. The corresponding sampling rate is the num-

ber of slices per volume divided by repetition time (TR),

making global effects critically sampled. This method is

computationally complex and limited to global fluctuations.

The digital filtering method has been applied to attenuate

the aliased physiological noise [7]. However, they are not

effective if BOLD activation and physiological noise overlap

in the frequency domain, which is true for most multi-slice

fMRI experiments.

Recently, nonlinear discriminant analysis techniques, such

as kernel principal component analysis (KPCA) [8], have

been applied to fMRI data analysis [9]. KPCA does not

employ projections in the frequency domain and may there-

fore distinguish frequency-overlapping signal and noise. In

addition, KPCA can capture high order dependencies among

multiple voxels, providing a more accurate and complete

characterization of data structure than linear methods. KPCA

has been applied to remove Gaussian noise that is primarily

characterized by the least significant principal components

(PC). These PCs are excluded from the reconstruction to

obtain the cleaned data [10]. This approach is not appropriate

to physiological noise removal because the intensity of

physiological noise is comparable to BOLD signal, and may

be characterized by the most significant PCs. If these PCs

are excluded from the reconstruction, important brain activity

information will be lost. Therefore, alternative approaches

should be considered. In our previous work [11], a KPCA-

based physiological noise removal method was proposed to

reduce physiological noise by filtering PCs contaminated by

the noise. In this work, we further developed this method by

evaluating the noise separation performance of different ker-

nel functions, and implementing a new approach to identify

the noise contaminated PCs. The method was evaluated on

human fMRI data acquired from both task-based and resting

state experiments.

The remainder of the paper is organized as follows. In

Section II, we review the basic concepts of KPCA. Section

III describes the proposed methods. Section IV is the exper-

imental study and results. Finally, we conclude this work in

Section V.
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II. KERNEL PRINCIPAL COMPONENT ANALYSIS

KPCA is a nonlinear extension of conventional linear

principal component analysis (PCA) [8]. The nonlinearity is

brought in through a kernel function that implicitly projects

the input data into a high dimensional feature space. A

linear PCA performed in the feature space is equivalent to a

nonlinear PCA in the input space.

Given n p-dimensional data samples xi ∈ Rp, i =
1, · · · , n, the PCs are estimated by computing eigenvalues

λ > 0 and eigenvectors V that satisfy:

λV =
1

n

n
∑

i=1

〈Φ(xi) ·V〉Φ(xi), (1)

where Φ is a nonlinear mapping from Rp to a higher

dimensional feature space F and 〈·〉 is the inner product

operator. Since V = span(Φ(xi), i = 1, · · · , n), we may

have V =
∑n

i=1 αiΦ(xi). If we define a n × n matrix K

with each entry as Ki,j = 〈Φ(xi) · Φ(xj)〉, and replace the

inner product in each entry with a kernel function k(x i,xj),
the previous eigen problem is represented as λα = Kα,

where α = (α1, α2, · · · , αn). After computing the singular

value decomposition on K, the k th PC in F is obtained by:

〈

Vk · Φ(x)
〉

=

n
∑

i=1

αk
i 〈Φ(xi) · Φ(x)〉 , (2)

where Vk is the kth eigenvector in F. Two kernel functions,

the polynomial kernel and the radial basis function (RBF)

kernel, as defined in (3), were evaluated in this study.

Polynomial kernel : k(x,y) = (x · y + 1)m,

RBF kernel : k(x,y) = e
−‖x−y‖2

2σ2 , (3)

where m is the polynomial kernel order, and σ is the RBF

kernel width parameter.

III. PROPOSED METHOD

The block diagram of the proposed method is shown

in Fig. 1. FMRI data is motion corrected and low-pass

filtered prior to KPCA decomposition. The PCs charac-

terizing significant physiological variations are identified,

and then undergo frequency analysis to locate frequencies

of aliased cardiac and respiratory cycles, as indicated by

simultaneously-recorded cardiac and respiratory data. The

identified PCs are filtered by digital filters designed to

attenuate the power at these frequencies. Both the filtered

and unfiltered PCs are used to reconstruct the denoised data

for the subsequent analysis.

A. Preprocessing

The motion artifacts in fMRI data are removed by using

the rigid body registration method proposed in [12], which

is part of FSL tools [13]. The data acquired under resting

state are low-pass filtered with a cut-off frequency of 0.1

Hz. The low-pass filter is needed to remove high-frequency

signal variations from the slowly-varying signal fluctuations

of interest in resting state, typically around 0.1 Hz or below.

A Gaussian kernel is used to decrease the spatial noise.

Fig. 1. Block diagram of the proposed method.

B. KPCA Decomposition

The low-pass filtered fMRI data is decomposed by KPCA

with either RBF or polynomial kernel. Temporal analysis is

used here to obtain temporal profiles of signal and noise.

To evaluate the performance of a kernel for separating the

aliased physiological noise and BOLD signal, a separation

measurement S is proposed here:

S =
1

N

N
∑

k=1

1− e−|IBOLD(k)−IPHY S(k)|, (4)

where N is the number of PCs, IBOLD is the mutual infor-

mation (MI) between a PC and the experimental paradigm,

and IPHY S is the MI between the PC and synchronized

cardiac (i.e., ICARD) or respiratory (i.e., IRESP ) fluctua-

tions. S values are between 0 and 1, and a S value closer to

1 means a better separation between the BOLD signal and

physiological noise. This measurement is also applicable to

evaluate the separation performance of a kernel for resting

state fMRI data. Since there is no experimental paradigm

for resting state acquisition, a different way of estimating

IBOLD is proposed here. First we select a seed region within

a functional network we are interested in, and calculate the

average time course of this region. The average time course

is used as the paradigm to compute IBOLD. Although it

is quite possible that this seed region is contaminated by

the physiological noise, this measurement can still provide

a reliable evaluation of the separation performance because

a kernel that can separate the BOLD signal and noise to

different PCs will lead to relatively large S values.

C. Frequency Analysis and Reconstruction

The simultaneously recorded cardiac and respiratory cy-

cles are down-sampled and synchronized to the fMRI timing.

After calculating the spectra of the synchronized physio-

logical cycles, frequencies of interest (FOI) showing peak

power of the aliased cardiac and respiratory noise can be

automatically detected and recorded. MI between the PCs

and physiological recording and expected BOLD signal is

estimated. PCs exhibiting high MI values with physiological

data but low MI values with BOLD signal are ranked in terms

of the power at the FOIs estimated from the synchronized

physiological cycles. Finite impulse response band-stop fil-

ters are then designed to attenuate the noise components at

these frequencies. This is more efficient than our previous

approach where all most significant PCs are examined in the
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frequency domain in order to identify the noise contaminated

PCs [11]. The method proposed by Kwok et al. was used for

the KPCA reconstruction [14].

D. Evaluation

The proposed method was compared with a physiological

noise removal method proposed in [15], which is an improve-

ment of the widely used RETROICOR method [5]. For task-

based fMRI data, a contrast-to-noise ratio (CNR) measure-

ment was calculated to evaluate the denoising performance

[16]. The CNR values are expected to increase or maintain

at the same level after the noise removal in brain regions

where BOLD activations appears during task stimulation,

and to decrease in regions contaminated by the physiological

noise. For resting state fMRI data, the default mode network

(DMN) in human brain was identified by correlation analysis

and compared between data denoised by the two methods.

IV. EXPERIMENTS AND RESULTS

A. Data Acquisition

FMRI data were acquired from a healthy volunteer at

a 3 Tesla system with a 8-channel coil. For task-based

experiment, 4 sets of fMRI data were obtained using T 2∗-

weighted parallel echo planar imaging (EPI), while the

subject was performing right finger-tapping motor task with

a blocked-design paradigm, which was consisted of four 25-

sec task block and five 25-sec off block. EPI parameters

included TR = 2 sec, TE = 30 msec, flip angle = 90◦, slice

thickness = 4 mm (with 1 mm gap), FOV = 24 cm x 24

cm, in-plane matrix size = 120 x 120, and the number of

axial-slice = 30. For resting state experiment, 4 sets of data

were acquired using the same T2*-weighted parallel EPI

sequence. The scan time for each resting state fMRI run

was 4 min. Inversion-recovery prepared spin-echo EPI was

also acquired to provide an anatomic reference with identical

voxel geometry and geometric distortions as in fMRI. The

cardiac and respiration circles were simultaneously recorded

and synchronized to the fMRI timing.

B. Task-based Experiment

(a) Polynomial kernel (b) RBF kernel

Fig. 2. The mean and SD of S values calculated as a function of (a)
the polynomial kernel order, and (b) the RBF kernel width by using the
task-based experimental fMRI data.

The separation performance of the two kernel functions in

(3) with different parameter settings was examined using the

acquired task-based fMRI data. For the polynomial kernel,

the kernel order values ranged from 1 to 16 with an interval

of 1. For the RBF kernel, the kernel width parameter was set

from 0.1 to 100, with an interval of 0.1 when 0.1 ≤ σ < 1,

with an interval of 1 when 1 ≤ σ < 10, and with an interval

of 10 when 10 ≤ σ ≤ 100.

Fig. 3. A stacked bar representation of IBOLD (blue), IRESP (light-
green), and ICARD (red-brown) values of all PCs.

Fig. 2 shows the average and standard deviation (SD) of

S values of the two kernels obtained from the task-based

fMRI data, where the solid blue line represents the separation

between BOLD signal and respiration-induced physiological

noise, and the dotted red line indicates that between BOLD

signal and the cardiac-induced physiological fluctuation. It

was observed that there is no significant difference between

S values when different kernel orders was used for the

polynomial kernel, as shown in Fig. 2 (a). However, when

the RBF kernel was used, there is a significant increase of

S value when σ is around 1. When the σ value exceeds

10 or is close to 0.1, the S values obtained from the RBF

kernel are close to those of the polynomial kernel. It was

also observed that the SD of S values is relatively large

when 0.8 ≤ σ ≤ 1, implying an inconsistent noise separation

performance. Therefore, we chose sigma = 2.0 for KPCA

decomposition, and Fig. 3 illustrates the computed IBOLD

(blue), IRESP (light-green), and ICARD (red-brown) values

of all obtained PCs via the stacked bars, where the length

of each color bar indicates the MI value. It can be seen that

most PCs with large IBOLD values are associated with small

IRESP and ICARD values, indicating a clear separation

between the BOLD signal and physiological noise.

(a) (b) (c)

Fig. 4. CNR maps calculated from (a) the original data, (b) the data
denoised by the KPCA-based method, and (c) the data denoised using the
improved RETROICOR method. Encircled regions in (b) indicate where
physiological noise is attenuated by the KPCA-based method.

Fig. 4 shows a comparison of the normalized (between

0 and 1) CNR values for one run of the task-based exper-

iment. Fig. 4 (a) was obtained from the original data, (b)
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was calculated from the data denoised by the KPCA-based

method, and (c) was from the data denoised by the improved

RETROICOR method. Note the change of CNR values in

the three encircled regions in (b) that are affected by the

physiological fluctuation, indicating a successful attenuation

of the physiological noise that cannot be identified by the

improved RETROICOR method.

C. Resting State Experiment

(a) Polynomial kernel (b) RBF kernel

Fig. 5. The mean and SD of S values calculated as a function of (a) the
polynomial kernel order, and (b) the RBF kernel width by using the resting
state experimental fMRI data.

A seed region was manually defined in the posterior

cingulate cortex (PCC). The average time course of this seed

region was used as a “paradigm” for BOLD signal, based on

which IBOLD in (4) can be calculated. Fig. 5 shows the

average and SD of S values of the two kernels estimated

from the resting state fMRI data. Most of S values calculated

from the two kernels are at a similar level, but we may see

an apparent increase from the RBF kernel when σ ≈ 2.

Therefore, we chose the RBF kernel with σ = 2 for the

resting state physiological noise removal.

(a) (b) (c)

Fig. 6. Part of the correlated DMN regions obtained from (a) the original
data, (b) the data denoised by the proposed KPCA-based method, and (c)
the data denoised using the improved RETROICOR method. The encircled
region in (a) is the seed region.

Using the same seed, correlation analysis was performed

at a significance level of 0.01 with the Bonferroni correction.

Fig. 6 shows the correlation maps obtained from (a) the orig-

inal data, (b) the data denoised by the KPCA-based method,

and (c) the data processed by the improved RETROICOR

method. The encircled region in Fig. 6 (a) is the seed region.

Figs. 6 (b) and (c) show that both the KPCA-based and

improved RETROICOR methods can reduce correlation in

regions close to the brain boundary where effects from res-

piration are more evident, while the correlated regions in the

ventromedial prefrontal cortex (vmPFC) is better preserved

by the proposed method. These results, along with those

from the task-based experiments, indicate that the proposed

method can provide reasonable and effective attenuation

of the cardiac and respiration-induced physiological noise,

facilitating the analysis of brain activity.

V. CONCLUSIONS

We addressed the issue of physiological noise removal in

fMRI data by using kernel machine techniques. Two kernel

functions were evaluated in terms of their performance to

differentiate the aliased physiological noise in fMRI data.

Experimental results indicate that the RBF kernel outper-

forms the polynomial kernel when its width parameter is

properly set. Based on the RBF kernel, an improved KPCA-

based physiological noise removal method was developed

and compared with an existing method by using the task-

based and resting state fMRI data acquired from a human

subject. The results show that the proposed method can

provide comparable or better physiological noise removal

performance than the existing method.
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