
  

  

Abstract—This paper describes an approach to improve the 

contrast and signal to noise ratio on ultrasound images. Images 

with sub-pixel lateral displacements were re-sampled using a 

hexagonal grid, registered and compounded. The resultant image 

was filtered using a hexagonal adaptive masking filter. This 

approach was evaluated with simulated images and real images 

from a breast phantom. The results show total improvements in 

signal to noise ratio of up to 313% in simulated images, and 

182% in phantom images. Contrast to noise ratio was improved 

by 286% in simulated images and 56% in phantom images. 

I. INTRODUCTION 

ltrasound images are affected by many types of 

artifacts that reduce their quality and limit their 

usefulness. Examples of these artifacts include: speckle, 

thickness of the image plane, reverberation, shadowing, 

attenuation and speed of sound errors [1]. Since ultrasound 

is a safe and cost-effective imaging modality, many efforts 

have been done to improve the quality of the images. There 

are two main approaches that have been used to improve 

signal to noise ratio (SNR) on ultrasound images: 

compounding and filtering [2].  

Compounding is a methodology that combines images 

acquired from different angles or aperture positions, or using 

two or more frequencies, with the purpose of averaging out 

speckle. By combining N images, the reduction in speckle 

can be up to N when the images are independent [3].  

In spatial compounding the images are typically acquired 

by rotating the transducer or the sample and registered 

(aligned) before combined [4, 5]. The images can also be 

acquired by displacing the transducer laterally [6] or using a 

combination of lateral and angular displacements [7]. 

With respect to filtering, conventional linear filtering 

techniques are often not effective for ultrasound images. 

There are two main reasons to that: first, the point spread 

function (PSF) of ultrasound is not shift invariant. And 

second, noise in ultrasound images can be modeled as 

having two components: one additive (such as electronic and 

thermal noise) and other multiplicative (speckle), and the 

statistics of speckle in the image depend on the physical 
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properties of the tissues.  

Previous works have used filtering techniques that include 

adaptive filters based on local statistics [8-11], anisotropic 

diffusion [12-14] and wavelets [15, 16].  

Statistical adaptive filters are basically smoothing filters 

designed so that regions within the image that closely 

resemble the statistics of speckle are replaced by a local 

mean value, while regions with properties that are least 

similar to speckle are kept unaltered. The filter output is 

usually determined by: 

( )xxcxy −+=  (1)  

Where x  is the mean value of the intensity within the 

filter window and c is the adaptive filter coefficient, which is 

calculated based on local statistics. If c > 1, the image is 

sharpened, if c = 1, the filter becomes an identity filter, if 0 < 

c < 1, the image is smoothed. And in the extreme case, when 

c = 0, the filter output is equal to the local mean.  

One of the limitations of masking filters is the window 

shape. They typically use rectangular windows that cause 

distortion in curved edges. This paper presents an approach 

to reduce noise and enhance contrast in ultrasound B-scans 

that consists of the combination of spatial compounding and 

hexagonal adaptive filtering. Spatial compounding can 

reduce speckle and other artifacts and has the potential of 

improving the PSF. By pre-processing the images using 

compounding, the effectiveness of signal processing 

techniques such as filtering can be improved.  

II. BACKGROUND 

A. Statistics of Speckle 

Ultrasound speckle results from the accumulation of 

random scatterings in the tissue volume that is being imaged. 

This accumulation can be described geometrically as a 

random walk of component phasors [17]. The scattering 

from these targets undergoes constructive and destructive 

interference that results in intensity fluctuations in the image 

that degrades its quality. 

Fully developed speckle occurs when the number of 

scatterings per resolution cell is large (N > 10). In this case, 

speckle can be modeled using the  Rayleigh distribution and 

its SNR is 1.92 [3]. Speckle has also been modeled using the 

K- and Rician distributions for partially and fully structured 

regions respectively [10, 17]. However, when ultrasound 

signals are logarithmically compressed, their statistics 

change, and fully developed speckle can be better described 

using the extreme value distribution, also known as Fisher-

Tippett distribution [18] or the Gaussian distribution [13]. 
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The logarithmically compressed envelope signal can be 

written as 

( ) GADX += ln  

D is related to the dynamic range of the input and 

gain of the compressor. Fig. 1 shows a region of speckle 

from the image of a contrast phantom and its histogram.

 The first works on statistical adaptive filters to remove 

speckle were published in the 1980s. The majority of these 

filters use the local variance to quantify the extent of speckle 

formation. Some of the most important contributions are 

mentioned next. Lee [8] developed masking filters for 

additive and multiplicative noise based on t

and variance, and used them to reduce speckle while 

preserving edges in radar images. Later on, Bamber and Daft 

[9] proposed an unsharp masking filter that used the ratio of 

the local variance to the local mean as the speckle 

recognition feature. Dutt and Greenleaf [10

research in logarithmically compressed images. They studied 

the statistics of fully developed speckle and partially

developed speckle and proposed an adaptive unsharp 

masking filter. Finally, Tay et al. [11] recently proposed an 

iterative despeckling method that smoothes only outlying 

pixel values. Outliers are defined as local extrema and are 

replaced by the local mean calculated without using the 

outlier values. 

B. Hexagonal Image Processing 

Regular hexagonal lattices are optimal for sampling 

circularly band-limited two-dimensional signals because the 

spectrum is more efficiently arranged in the frequency 

domain [19]. As most of medical images are isotropically 

band-limited, hexagonal sampling is the most appropriate 

sampling strategy for these images [20].  

Most image acquisition and display systems are designed 

for rectangular pixels. A simple way to create a hexagonal 

sampling grid is by using rectangular pixels that are 

displaced by half a pixel on alternate rows (brick wall 

approach). We named this technique interlaced sampling and 

explored its implementation in a previous research report

[21]. Interlaced sampling can be more robust than 

rectangular sampling with respect to under

artifacts at high frequencies. 

Fig. 1.  Left: region of speckle in the image of a con

histogram. 
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III. MATERIALS AND 

A. Processing of Simulated Images

The images for this experiment were generated using the 

ultrasound simulation software Field II

program used a 3.5 MHz linear transducer 

elements to generate images of a phantom with some water

filled cysts and high-scattering regions.

is shown in Fig. 4. 

1) Spatial compounding: Ten images were generated by 

displacing the lateral position of the scatterers in 0.05mm 

steps [21]. The images were registered

interlaced grid. This operation requires down

factor of 2. The interlaced images were 

displayed using hyper-pixels composed of four pixels (2x2)

Alternate sampling lines were shifted one pixel to obtain the 

interlaced grid. The compound image w

averaging the interlaced images.  

2) Adaptive filtering: A statistical adaptive filter 

to the filter proposed by Dutt and Greenleaf 

process the compound image. A hexagonal mask

pixels was defined as shown in Fig. 2. 

The filter’s output was calculated 

the adaptive filter coefficient c was estimated as follows

21 xkc σ−=  

Where 2

xσ  is the local variance, and

constant. The value of k was calculated as

2

s
σ is the variance in a homogeneous 

containing speckle. 

The filter’s response adapts to the local statistics of the 

image. A high variance value suggest

boundary in the region and the output of the filter is 

approximately equal to the input. On the other hand, 

variance is a sign that the region is homogeneous

smoothed to reduce noise. The values of 

be in the interval [0, 1].  

B. Processing of Phantom Images

The images for this experiment were 

phantom (Model BB-1, ATS laboratories

The phantom was in a water tank as shown in Fig. 

imaged with the General Electric 

Healthcare, Milwaukee, WI) usi

transducer. The images were digitized with 8

 

Fig. 2.  7x7 hexagonal mask. The filter’s output was assigned to the center 

pixel (shown in dark gray).   
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image was obtained by 

tatistical adaptive filter similar 

by Dutt and Greenleaf [10] was used to 

A hexagonal mask of size 7x7 

shown in Fig. 2.  

calculated using equation (1), and 

was estimated as follows 

(3)  

and k is its normalization 

ulated as 2

s
k σ= , where 

homogeneous region of the image 

adapts to the local statistics of the 

suggests that there is a 

and the output of the filter is 

equal to the input. On the other hand, low 

is a sign that the region is homogeneous, so it is 

The values of c were restricted to 

Processing of Phantom Images 

were from a breast biopsy 

ATS laboratories, Bridgeport, CT). 

as shown in Fig. 3. It was 
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using a 7.5-MHz linear 

digitized with 8-bit resolution 
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using a NI IMAQ PCI 1408 board (National Instruments, 

Austin, TX).  

1) Spatial compounding: The transducer was held by a 

mechanical device that allowed precise lateral shifts (shown 

in Fig. 3). It was displaced laterally in 0.1mm steps to 

acquire 20 images from the same section. The images were 

registered by adding a pseudo-phase and calculating the 

cross-correlation function, as described in a previous 

research report [24]. The registering process involves up-

scaling of the images by a factor of 4 in order to have sub-

pixel precision in the registration. The registered images 

were re-sampled on an interlaced grid and displayed using 

2x2 hyper-pixels. The compound image was calculated by 

averaging the 20 interlaced images.  

2) Adaptive filtering: The compound image was filtered 

using the same hexagonal masking filter applied to the 

simulated image. The output of the filter was calculated 

based on equations (1) and (3). The local variance was used 

to estimate the speckle content and adjust the smoothing 

ability of the filter. 

IV. RESULTS 

A. Using Simulated Images 

Fig. 4 shows one of the simulated images and Fig. 5 

shows the compound and filtered images. Speckle noise was 

significantly reduced by compounding, and the adaptive 

filter further improved the quality of the image. The 

structures in the filtered image are better delineated. 

The SNR and contrast to noise ratio (CNR) were 

estimated for the original, the compound and the filtered 

images, and the results are in Table I. The SNR was 

calculated as the ratio of the mean to the standard deviation 

within homogeneous regions and the CNR was calculated 

using the following expression  

( )225.0 yx

yx
CNR

σσ +

−
=  (4)  

Where x  and y  are the average amplitudes of the object 

and its background respectively, and 2

xσ  and 2

yσ  are their 

variances.  

Table I shows that after compounding, the improvements 

in SNR are close to the maximum expected by combining 10 

independent images ( 16.310 ≈ ) [3]. The reason is that 

simulation ensures statistical independence of the averaged 

images. Improvement in CNR was 200%. The adaptive filter 

further improved SNR in the background and in the hyper-

echoic mass about 36% and 28% respectively; and CNR 

further increased 27%.  

B. Using Phantom Images 

Fig. 6 shows one of the images of the breast phantom and 

Fig. 7 shows the compound and filtered images. Speckle 

noise was reduced by compounding, especially in the cyst 

region. The adaptive filter was able to further improve SNR 

in the image without blurring edges, and enhanced micro-

calcifications.  

The estimated values for SNR and CNR are shown in 

Table II. Compounding improved SNR in the background 

and in the cyst about 18% and 130% respectively. And CNR 

increased 20%. After hexagonal filtering, the SNR was 

further improved 31% in the background, 21% in the cyst 

and CNR increased 30%. 

C. Using a Rectangular Filter 

The images acquired with the ultrasound scanner were 

compounded and filtered in their original rectangular 

sampling grid. The purpose was to compare the performance 

of the hexagonal filter with a rectangular filter that has the 

same input-output relation and equivalent size (7x7 pixels). 

Results show similar improvements in SNR and CNR by 

compounding. However, the hexagonal filter was more 

effective in reducing speckle noise when compared to the 

rectangular filter. After rectangular filtering, the SNR was 

TABLE I 

SNR AND CNR IN SIMULATED IMAGES 

Image 
SNR 

(background) 

SNR       

(hyper-echoic 

mass) 

CNR 

Original image 

 

3.89 ± 0.46 8.62 ± 1.84 3.52 ± 0.30 

Compound image 

 

11.76 ± 1.04 25.31 ± 3.19 10.69 ± 0.65 

Filtered image 16.10 ± 1.74 32.48 ± 3.56 13.65 ± 0.90 

 

 
Fig. 4. Simulated image of a cyst phantom showing two hyper-echoic 

regions and two cysts.   

Fig. 5. Interlaced images obtained after processing simulated images of a 

cyst phantom. Left: compound image. Right: filtered image.  

 

 
 

Fig. 3. Experimental setup. The breast phantom is in a water bath and the 

ultrasound transducer is held by a mechanical device. 
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improved 11% in the background, 14% in the cyst and CNR 

increased 11%.   

V. DISCUSSION AND CONCLUSIONS 

The results of this research show that the combination of 

spatial compounding and adaptive filtering can be very 

effective to reduce artifacts in ultrasound images. The 

improvement in overall image quality due to compounding 

was higher in simulated images than in real images. The 

reason is that simulated images are statistically independent. 

The phantom images, on the other hand, were acquired with 

small lateral displacements, so they are partially correlated. 

Future work includes the use of angular compounding on 

images with low correlation to improve the effectiveness of 

this technique in reducing speckle and other artifacts.     

Even though most of the acquisition and display systems 

for ultrasound images use rectangular grids, there are other 

sampling methods that are more efficient. This paper 

proposes a hexagonal masking filter to reduce speckle in 

compound images. The filter size was chosen as 7x7 pixels 

to have good noise removal without blurring the structures. 

Compared to the equivalent rectangular filter, the hexagonal 

filter is more effective to reduce noise but the processing 

time is longer.  

The combination of compounding and hexagonal 

processing has the potential of improving the detectability of 

structures imaged with conventional ultrasound scanners. 

Applications of this approach include the pre-processing of 

medical images for automatic segmentation and analysis. 
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Fig. 6. One of the images of the breast phantom showing a water-filled cyst 

and a complex mass.  

Fig. 7. Interlaced images of the breast phantom. Left: compound image. 

Right: filtered image.  

 TABLE II 

SNR AND CNR IN PHANTOM IMAGES 

Image 
SNR 

(background) 

SNR       

(hypo-echoic 

mass) 

CNR 

Original image 

 

4.62 ± 0.33 4.00 ± 0.77 3.76 ± 0.30 

Compound image 

 

5.48 ± 0.40 9.28 ± 4.90 4.55 ± 0.20 

Filtered image 7.24 ± 0.63 11.30 ± 3.99 5.92 ± 0.33 
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