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Abstract— Investigators around the world are working on
retinal neurostimulation as it may restore functional vision
to the blind. The image is captured by a camera and after
being processed, a series of electrical stimuli are applied to the
surviving ganglion cells of the retina. This visual perception
is expected to have low resolution. Therefore, there is a need
of new algorithms that present the information contained in
a visual scene understandable to humans. This study presents
a novel multi-resolution algorithm based on wavelet analysis
to extract the useful features of an image. Participants in this
experiment were able to configure a filter bank to complete
a set of everyday tasks. This study shows that wavelet-based
algorithms may facilitate improved functional performance in
prosthetic vision.

I. INTRODUCTION

Restoring vision to the blind may not remain as an
unsolved problem. Clinical trials have proved it is possible
to induce a visual sensation by electrical stimulation [1]. As
a consequence, researchers are investigating different visual
neuroprosthesis prototypes to drive electrical current to the
surviving neural tissue. This approach would ideally restore
functional vision to patients suffering from diseases like
retinitis pigmentosa or age-related macular degeneration. In
particular, the stimulation of the retinal ganglion cells has
been reported to produce the perception of spots of light
in legally blind people [8]. These elements of light, known
as phosphenes, have been the subject of different studies in
the scientific literature. Several profiles have been described
by Chen et al. [4]. However, the most extended model,
which can be contrasted with computational analysis [6], is
the Gaussian profile: a mathematical representation of the
luminance of the phosphene.

Psychophysical experiments can be carried out by means
of simulated prosthetic vision (SPV) [5]. A normally sighted
subject is immersed in bionic vision by virtual reality. Then,
a personal computer (PC) transforms the images captured
by a camera and displays them using a headset. The first
generation of visual prosthesis is expected to have a small
number of phosphenes, big gaps between them and a limited
number of brightness levels [11]. Therefore, there is a need
for image processing algorithms that are able to extract the
most useful information for the recipient from every scene
according to the circumstance.

Mallat et al. [9] set the principles of multi-resolution
analysis. This idea can be applied to image compression
and to reduce its resolution. It allows one to extract the
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Fig. 1. The phosphene map used to render simulated prosthetic vision.
Every row corresponds to a different diameter whereas columms correspond
to the brightness of the phosphene.

information in a multi-resolution way, copying some of
the mechanisms of the eye and brain in the processing
of vision. Nonetheless, context-based processing is required
to facilitate functional vision: object manipulation, pattern
recognition, mobility, etc.

II. METHODOLOGY

A phosphene map was rendered using 2D-Gaussian pro-
files. Phosphenes were considered as the elements of a vec-
torial base when constructing the image. Some phosphenes
may overlap each other, and fill the void between adjacent
phosphenes.
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Î(x, y) represents the image in SPV. It is calculated as a
linear combination of the elements of the phosphene map for
every region of interest (i) in the original image, as described
in (1). Phosphenes have been modulated in amplitude (Ai)
and diameter (σi). In particular, 31 phosphens plus the null
phosphene configure the suggested map, having eight levels
of brightness (three bits) and four different diameters (two
bits). To avoid pixellation, the Gaussian profile of every
phosphene was represented in a 64 × 64 pixel array.

A hexagonal pattern of 98 phosphenes has been chosen for
the phosphene lattice [7]. The distance between phosphenes
varies between 0.8°and 1.2° (20 and 30 pixels respectively).
Every image was first converted from a red, green, blue
(RGB) image into a grayscale image (1 byte per pixel).
Afterwards, it was low and high pass filtered using an
orthogonal filterbank as described by Mallat et al. [9]. The
low pass (LP) filter was chosen a symmetric Gaussian filter
of order 10 [10].

hhp[n] = (−1)(1−n)hlp[1− n] (2)

This allows to obtain the information of different regions
about the point of interest, so the phosphene would represent
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the LP or the high pass (HP) information of the chosen
scale. In this study, participants were able to manipulate the
filter algorithm. The weight of LP and HP information was
balanced with the factor k as in the following equation:

Ai = kAiLP
+ (1− k)AiHP

(3)

The effect of phosphene overlapping plays an important
role in the performance of the algorithm. It fills the gaps
between the electrodes and provides a perception of a con-
tinuous image, what helps the brain to understand the scene.
In reality, it is expected that the electrical stimulation will
produce a similar perception, as the patterns of the activated
excitable tissue may overlap in computational models [6].

The headset for virtual reality was provided with a camera
and a display, having a resolution of 640 × 480 pixels,
representing a field of view of 25°×19.2°. A USB control
provided with three knobs was constructed to configure the
filter settings. By turning the knobs, the participant was
able to vary the filter configuration, the scale factor and the
phosphene representation, as described lately. The software
was developed in C++/Qt under Linux.

This study was authorised by the Human Research Ethics
Committee of the University of New South Wales, Australia,
with reference number HREC10135. Six normally sighted
participants were recruited for this experiment, three males
and three females aged 18-33 years. None of them had
previously participated in SPV studies. Participants A1, A2
and A3 had a phosphene spacing of 30 pixels, whereas for
participants B1, B2 and B3 this parameter was configured to
20 pixels. A PC with a 14 inch screen was used as a display
to show the images to the participants (they were asked to
look at the screen and complete the tasks). The working area
consisted of a black A2 size cardboard having an embossed
white cross in its center, as a tactile and visual feedback. Four
main tasks were studied in this research: motion tracking,
pattern recognition, size classification and reading.

Fig. 2. The image is first converted into a gray-scale image. Afterwards,
it is LP and HP filtered according to the scale factor chosen by the user (f).
The coefficient corresponding to each electrode location is weighted (k) for
a representation in the phosphene space, taking into account the phosphene
representation factor (r).

Fig. 4. The figure shows, in the center, a plus sign as shown to the
participants during pattern recognition. A high pass phosphenized image of
the original is shown on the left, and the low pass version on the right.

• Motion tracking: a black screen having a small gray
cross in the center was crossed randomly by a moving
spot of light. Participants were required to indicate the
direction of the movement (up, down, left, right).

• Pattern recognition: subjects were shown basic patterns
(cross, circle, square and triangle) and the were asked
to identify each of them.

• Size classification: different objects were printed in four
different sizes on paper cards. Participants were required
to classify their size.

• Reading: several sets of five cards containing alphanu-
meric characters were given to the participants. They
were asked to read a sequence and to order the cards
according to the sequence provided.

During the simulation, subjects were able to configure
three parameters: the LP/HP ratio (k), scale factor (f) and
the phosphene representation (r). The LP/HP ratio has been
described previously in (3). The algorithm analyzes different
vicinities around a pixel by up-sampling the filter bank [12].
The scale factor indicates how many times the filter bank
is going to be up-sampled. The scaling factor narrows the
bandwidth of the LP and HP filters, as indicated in the
following equation, that represents the time scaling property
of Fourier transform for a given signal h[n].

h[2f · n] ⇔ 0.5H(jΩ/2f ), f ∈ Z (4)

Phosphene representation allows the user to choose the
phosphene size by modulating its width (σ). Once this
parameter is fixed, the brightness of the phosphene is de-
termined with 3 bits. Thus, LP/HP ratio, scale factor and
phosphene representation are related to each other for an
optimal representation.

III. RESULTS

The performance of each subject was assessed looking
at the number of correct answers and the time required to
complete the task, S and Tt respectively.

S =
nr − nw/p

n
, Tt = T (1 +

nw

n
) (5)

Where the total number of questions is given by n (nine sets
of 20 questions per session for motion tracking and pattern
recognition, and five set of 5 cards for size classification and
reading), the number of right and wrong answers are nr and
nw respectively, and p represents the number of options for
each question. The time required to complete every task (T ),
has been adjusted accounting for the number of errors. The
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Fig. 3. The graph shows the Phosphene Representation (r) and the Scale Factor (f) on the left vertical axis, and the LP/HP Ratio (k) in percentage on the
right vertical axis for participant A2. All values are represented against time in minutes and the section corresponding to each task has been shadowed and
numbered as described in the legend. The scale factor looks at the size of the area analyzed around a given pixel, the phosphene representation is related
to the phosphene diameter wheras the filtering ratio describes the proportion of each band that has been considered.

average value for every task can be seen in Table I for the
Group A of subjects and Table II for the Group B.

Scaling factor and phosphene representation play an im-
portant role in how the algorithm extracts the information
from the scene and its reconstruction. Fig. 3 represents the
configuration adopted by participant A2 during the experi-
ments. Note that both parameters are correlated to the LP/HP
ratio. In particular, the correlation between the filter ratio and
the scale factor for A2 was −0.3274 for session 1, 0.2957
for session 2 and 0.7699 for the last session (p < 0.05).

During the experiment, the filter configuration was
recorded as well. It was specially interesting to observe how
participants decided to use a HP or a LP filter configuration
depending on their requirement for a given situation. In
Fig. 3, the right vertical axis represents the factor k in
percentage, as in (3). Subject A2 achieved a very good
performance in size classification by setting the filtering
to high pass for this task, as can be deduced from Fig.
3. The participant developed learning with each session
and the behaviour became very clear in the session 3 [2].
Other subjects resorted to changing filter configurations when
having problems in completing a task, giving rise to spikes
in the filter configuration graph.

IV. DISCUSSION

Several scientists have described the importance of reha-
bilitation programs after implantation [3], [5]. The visual
cortex is expected to assist the recipient of a visual prosthesis
in adapting to a phosphene-like visual perceptions. Thus,
participants in this study improved their performance in every
task as they were trained providing the researchers with
information on how to configure a multiscale-multiresolution
algorithm.

Participants having a greater phosphene to phosphene
distance (Group A) achieved a lower score in general,
although they showed a similar learning rate. The amount
of information contained in an image is independent of the
phosphene spacing, nevertheless, field of view and resolution
are not: the smaller the phosphene spacing the smaller the
the field of view, and therefore, the greater the resolution of a
phosphenized image. In this case, considering 98 electrodes
and the representation parameter fixed, an image contains
294 bits of information. Therefore, if the original image
(640 × 480 RGB pixels) is represented with 294 bits, the
compression rate is approximatelly 1:25000.

During the study, participant A3 used hands as a feed-
back for size classification. Subjects belonging to group A
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TABLE I
RESULTS SHOWN IN GROUP A IN EACH TASK. FOR EACH SUBJECT, COLUMNS REPRESENT THE SESSION

Subject A1 Subject A2 Subject A3
Motion Tracking [%] 85 96.5 100 100 94.5 100 100 99 100

Pattern Recognition [seconds] 74 56 51 121 58.5 52 85 55 41.5
Size Classification [seconds] 108 74 99 70 57 51 148 210.5 185

Reading [seconds] 176 149 154 146 120.5 72.5 409 253.5 185

TABLE II
RESULTS SHOWN IN GROUP B IN EACH TASK. FOR EACH SUBJECT, COLUMNS REPRESENT THE SESSION

Subject B1 Subject B2 Subject B3
Motion Tracking [%] 95 98 99 92 97 95.5 94.5 98.5 99

Pattern Recognition [seconds] 118 85 49 240 59 46.5 123 65 46.5
Size Classification [seconds] 252 96.4 92.8 324 92.5 67.5 108 40.5 46.0

Reading [seconds] 180 257.5 180 300 180 129.5 119 74.5 70.5

required less time to complete the reading task. It was scored
best by participant B3, even having a greater phosphene
spacing. The fact that a greater phosphene spacing provides
a greater field of view seems to be the cause of this result,
as it involves eye-hand coordination. In addition, subjects
of Group B kept a greater distance between the camera
and the object they were manipulating and observing. An
intermediate value of the filtering ratio provides a silhouette
of the object and information about its texture. Nevertheless,
none of the participants found this configuration of their
interest.

V. CONCLUSIONS

Psychophysical experiments constitute the basis for exper-
imentation when it refers to a sensory perception elicited by
electrical stimulation. The recipient of a bionic eye has to
be able to recognise general shapes in order to develop a
functional vision. Edge detection is one of the fundamental
instruments to classify objects such as cups, plates, doors or
windows [3]. It is required for navigation mainly, although
it is equally important in pattern and object recognition.
On the other hand, face recognition and reading require a
higher visual acuity, which is related to phosphene spacing
and resolution. This study suggests that the algorithms based
on wavelet analysis may assist recipients in different tasks
by adapting the synthesis algorithm to the necessity. These
algorithms are broadly used in image compression [13] and
seem to be of important application in generating the stimuli
to be driven to the neural tissue.

Further experiments are required to contrast and to vali-
date different configurations for particular tasks. There is a
knowledge gap about the significance of band pass analysis
in prosthetic vision. Ideally, it would be of relevant interest
in designing a smart system able to adapt the configuration

of the visual prosthesis as a guide dog decides what to do
for a blind.
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