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Abstract— Registration of histology to three-dimensional (3D)
magnetic resonance (MR) images is often required for the anal-
ysis of brain structure and investigation of brain pathologies.
A novel algorithm for deformable registration of an individual
histological section to a brain MR image is described. The cost
function uses a novel hybrid intensity- and boundary surface-
based measure that reflects the contrast of histological slice
intensities across the boundary of the pial and inner cortical
surface. The algorithm relies on implicit representation of
cortical surfaces reconstructed from an anatomical MR image,
and computes the cost function in a level set framework. The
algorithm is evaluated on cross-modality registration of myelin-
stained histological sections to a high-resolution MR image of
the human brain.

I. INTRODUCTION

Registration of histological sections with magnetic reso-

nance (MR) images is an important step in quantitative anal-

ysis and cross-modality comparison of brain histology and

MRI data [1],[2]. The registration task poses a challenging

problem, because a brain sample is subjected to multiple

nonuniform and nonrigid deformations in the process of

preparation and histological sectioning. Global and local dis-

tortions pertinent to different stages of histological sectioning

procedure are described in [3]. A brain sample undergoes

global shrinking during fixation in formalin, and each slice is

experiencing local uncorrelated non-linear distortions when

sectioned. When data for contiguous sections are available,

registration may proceed in two stages: sequential slices are

2D-aligned into a 3D histology volume, and the histology

volume is further 3D-registered with an MRI or a positron

emission tomography (PET) image. For example, Ourselin

et al. [3] applied a block matching algorithm to align

histological sections into a reconstructed volume, which is

then registered to MRI data with a 3D-version of the same

algorithm. If available, photos of the cryomacrotome cut

view may be used as intermediate data, facilitating 2D-

alignment and volume reconstruction. Mega et al. [4] utilized

an elastic warping/surface matching approach to register

stained sections with optical images, and applied a 3D rigid

registration to align cryovolume photos with PET. Optical

images may also serve as a reference in case histological

sections are not contiguous (e.g., see [5]).

When histology data are sparse, and no intermediate

optical data are available, co-registration with MRI is posed

as a 2D-to-3D, slice-to-volume registration problem (Fig. 1),

which is concerned with finding a correspondence between
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a deformed image and a section of a volume by a warped

surface. Jacobs et al. [6] registered rodent brain histology to

MRI in two steps: first by rigid alignment of a histological

slice with an MR image based on a modified ”head and hat”

surface matching algorithm, followed by a 2D warping of a

planar section of the MRI volume onto a histological image.

The 2D warping step used matching landmarks automatically

selected along both sets of contours. However, modeling

the sectioning surface as a plane may not correctly reflect

global deformations of a brain sample; such cross-section is

better modeled as a warped surface. In addition, it has been

found that a surface-to-surface matching can be less accurate

compared to intensity-based registrations [7].

Fig. 1. Illustration of hybrid boundary-based slice-to-volume registration of
a histological section to an MRI volume (left: a histological and a registered
MR slice; right: rendering of three histological sections cutting through the
pial (top) and the inner (bottom) cortical surface reconstructed from MRI).

We described detailed results of deformable registration of

an individual histological section to a brain MR image in the

intensity-based slice-to-volume registration framework in [8].

In this study, we present a novel approach with a hybrid cost

function that uses a measure based on (a) intensities from

histology and (b) surface boundaries derived from an MR im-

age, a measure that reflects the contrast of histological slice

intensities across the boundary of the pial and inner cortical

surface. The new approach was inspired by the recent work

on boundary-based rigid alignment by Greve and Fischl [9],

which demonstrated good performance in intermodal rigid

registration with partial field-of-view brain coverage in one

of the images, even to the extent of registering single slices.

We employ this idea of a hybrid intensity- and boundary-

based cost function in a new application of nonrigid slice-

to-volume registration, with the aim of improving the spatial

overlap of a cortical ribbon in registered histology and MR
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slices. Our algorithm, contrary to [9], which is based on a

surface mesh model, relies on an implicit representation of

cortical surfaces reconstructed from an anatomical MR image

[10], and efficiently computes the cost function in a level set

framework. In addition, our algorithm can use both the pial

and the inner cortical boundary, as opposed to [9], which

uses the white matter surface only.

II. METHODS

We now describe our approach for the nonrigid registra-

tion. A prerequisite, the reconstruction of cortical surfaces

from an anatomical 3D MR image, is described elsewhere,

for example, see level set deformable model methods in

[10] or [11]. Although our registration algorithm relies on

implicit representation of cortical surfaces in the form of

level set functions, it can be used as well in conjunction

with any surface mesh based cortical reconstruction software

(e.g., with FreeSurfer [12]), by means of an additional pre-

processing step that computes a (signed) distance function on

a surface mesh (e.g., via the mris volmask tool generating a

distance ribbon volume in FreeSurfer).

Our registration algorithm consists of three main parts:

(1) a cost function with a similarity measure, (2) a geo-

metric transformation with a deformation model, and (3) an

optimization scheme. A slice-to-volume nonrigid registration

takes as an input a 2D image (called target or floating image)

and finds a corresponding warped cross-section slice (called

registered image, 2D) in a 3D volume (called source or

reference image). Let I((x,y)∈Ω)∈R and V ((x,y,z)∈Φ)∈
R denote the real-valued intensity function of a continuous

version of a 2D histological image and a 3D MR image with

domain Ω⊂R
2 and Φ⊂R

3 respectively. Continuous images

are obtained from discrete images by a chosen interpolation

model, for example by trilinear or spline interpolation. A

geometric transformation T is defined as a mapping T :

Ω 7→ Ψ,Ψ ⊂ Φ; the mapping determines the domain of a

warped slice Ψ ⊂R
3. Then a registered image IR (MR slice)

is defined as the following intensity function: IR(V,T ) =
{iR = V (~r),~r ∈ Ψ}. We assume that the inner (white) and

the outer (pial) cortical surfaces are represented by the

level set functions Φw(x,y,z) and Φg(x,y,z). Then slices

φw,g(Φw,g,T ) = {φw,g = Φw,g(~r),~r ∈ Ψ} denote registered

cross-sections through the level set volumes, which implicitly

represent contours of the white and pial surface boundary in

the registered MR slice IR.

A. Cost function

Let Ssim(I1, I2) denote an intensity-based similarity mea-

sure (a scalar) between two images I1, I2, such that closer

similarity of images results in higher value. Two widely used

examples of such a similarity measure are the correlation

coefficient (CC) and the normalized mutual information

(NMI) [10]. A traditional intensity-based cost function is

usually defined as:

C(I,V,T ) =−Ssim(I, IR)+βE(T (Ω)), (1)

where E(T (Ω)) is the deformation energy of the geomet-

ric transformation, and β is the weight parameter at the

energy penalty term. Image registration seeks the optimal

transformation T = argmin(C(I,V,T )) that minimizes the

cost function. Here, we propose to replace a purely intensity-

based similarity measure Ssim in Eq. (1) with a new hybrid

measure that captures the contrast of histological image

intensities I(x,y) across the boundary of the inner or pial

cortical surface:

Hw,g =
∫∫

Ω7→Ψ

〈

∇I(~x),∇φw,g(~x)
〉

1
9 ∑~xi∈N̄8(~x)

I(~xi)
δ̂ (φw,g(~x))d~x, (2)

where angle brackets denote the inner product between the

intensity gradient vector ∇I and the gradient of the level

set function ∇φ , N̄8 is the closed 8-neighborhood of a

2D-point ~x ∈ Ω. The integration is carried out over the

histological image domain Ω, and implies that the one-to-one

mapping T : Ω 7→ Ψ supplied by the registration’ geometric

transformation is used where needed (e.g. in φw,g(~x)). The

integration uses a smeared-out approximation of a delta-

function δ̂ (φ) (see [13]) defined as follows:

δ̂ (φ) =











0 φ <−ε ,
1

2ε

(

1+ cos
(

πφ
ε

))

−ε ≤ φ ≤ ε ,

0 ε < φ ,

(3)

where the parameter ε determines the size of the band-

width of numerical smearing. The hybrid measure defined

in Eq. (2) represents a contour integral, written in level set

representation [13], of the histological slice intensity gradient

component that is normal to the cortical boundary in the

slice. The sign and magnitude of this component reflect

the intensity contrast across the boundary. For example, if

gray matter (GM) has brighter intensities than white matter

(WM), the component (for the inner cortical boundary)

will have a positive sign and larger values if the cortical

ribbon is well registered between the two modalities. In the

integral, the normal component of the intensity gradient is

weighted by the average intensity in the neighborhood in

order to normalize the intensity contrast and account for

local variations of intensity for a particular tissue class.

The tunable parameter ε influences the capture range of

the hybrid measure, and should not exceed the width of the

narrow band that was used in a level set model in cortical

reconstruction (see [10],[11]); we set ε = 3 voxels in our

experiments. Finally, with the new similarity measure, the

hybrid boundary-based cost function is defined as:

CBB =−αwHw(I,Φw,T )−αgHg(I,Φg,T )+βE(T (Ω)),
(4)

where αw and αg are user-defined weights setting the relative

importance of the contrast across the inner and pial cortical

surface, respectively. In addition, the sign of a weight αw,g

accommodates the direction of the contrast in a particular

histological modality; for example, for a histological image

with GM brighter than WM and brighter than background,

αw ≥ 0 and αg ≤ 0 should be used (e.g., αw = 1,αg =−1).
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B. 2D-to-3D warping transformation based on thin-plate

splines

Thin-plate splines (TPS) [14] interpolation function

T (x,y,θ) is defined as an affine term and a superposition

of radial basis functions (RBF):

T (x,y,θ) = a0 +a1x+a2y+ ∑
(xi,yi)∈θ

wiU(||(xi,yi)− (x,y)||)

(5)

where {a0,a1,a2} are affine coefficients, {wi} are RBF

weights, and U(r) = r2 logr are RBFs originating at control

points θ = {(xi,yi)} (see [14]). Given a set of interpolation

conditions T (xi,yi) = ti{(xi,yi) ∈ θ}, there exists a closed

form solution for TPS coefficients [15]. TPS minimizes the

bending energy:

ET =
∫∫

R2
(T 2

xx +2T 2
xy +T 2

yy)dxdy. (6)

TPS are typically used in a 2D nonrigid registration based

on point-landmark matching [6], [16]: point-landmarks in a

target image serve as control points, and matched landmarks

in a source image define displacements (u,v) of a 2D warp,

which is modeled by two independent TPS functions. Our

slice-to-volume registration does not use landmarks. Instead,

TPS are used in a novel way to parametrize a smooth 3D

deformation of a 2D surface: control points are placed in

a regular grid on the 2D image domain Ω, and a 3D warp

is modeled by three independent TPS functions u(x,y,θ),
v(x,y,θ), and w(x,y,θ): Twarp : (x,y) 7→ (x + u,y + v,w).
The displacements (ui,vi,wi) at the control points serve as

degrees of freedom (DOF) and thus ”steer” the deformation;

TPS coefficients are computed from these displacements. The

smoothness energy of the deformation field is the sum of

three individual TPS bending energies ET = Eu +Ev +Ew.

For slice-to-volume registration, the warping transformation

Twarp is combined with a 3D alignment Talign in the form

of a rigid (6 DOFs: rotation, translation) or a Procrustes (9

DOFs: rotation, translation, scaling) transformation.

III. EXPERIMENTAL RESULTS

High-resolution MR images of an isolated left brain hemi-

sphere fixated in formalin were acquired post mortem (3T

T1 3D-MDEFT FOV 96x192x128 mm, 256x512x512 voxel

0.375x0.375x0.25 mm, scanning time 12 h). The contrast of

the MR images is inverted due to fixation in formalin (see

MR slice in Fig. 1). After MRI scanning, coronal sections

were cut from brain sample at 1.5 cm spacing. Slices were

myelin-stained and scanned on a flat-bed scanner at 2000

dpi. The MR image was preprocessed to correct for intensity

inhomogeneities, and converted to an isotropic resolution of

0.35 mm. Histological images were converted to an 8-bit

gray-scale intensity range (Fig. 2), and re-sampled to match

the spatial resolution of the MRI data; the bright background

was suppressed by thresholding. The registration algorithm

was applied to coronal histological slices from three distinct

blocks of the brain sample (#1: in the prefrontal, #2: in

the central, and #3: in the occipital region of the left hemi-

sphere). The cost function was minimized by the NEWUOA

algorithm [17]. For nonrigid registrations, β = 0.1 has been

chosen (see [8]). Rigid registration runs in less than one

minute for both CC-based and hybrid cost function. Nonrigid

boundary-based registration currently takes between 0.5-1.2

hours on a 2.4 GHz Athlon CPU, depending on the number

of control points.

Registration #1 (%) #2 (%) #3 (%)

CC rigid 78.69 79.97 70.24
BB rigid 82.34 80.19 73.08

BB TPS (αw = 1,αg = 0) 81.83 84.00 75.73
BB TPS (αw = 0,αg =−1) 82.49 86.43 77.05

BB TPS (αw = 1,αg =−0.5) 83.68 88.13 78.98
BB TPS (αw = 0.5,αg =−1) 83.83 86.20 79.32

TABLE I

REGISTRATION RESULTS: % OVERLAP OF THE CORTICAL RIBBON

PIXELS IN REGISTERED IMAGES (CC - CORRELATION COEFFICIENT

INTENSITY-BASED COST FUNCTION; BB - BOUNDARY-BASED HYBRID

COST FUNCTION)

Table I shows quantitative evaluation of the quality of

registration results measured by the percentage of pixels

in the registered cortical ribbon that have bright intensity

(I > 150) in histology, and thus can be also classified as GM

in histology, and can be counted as a match in both modal-

ities. Results demonstrate that the boundary-based nonrigid

registration consistently yields a 5-10% improvement in the

overlap of the cortical ribbon compared to the intensity-based

approach. Figure 2 shows contours of the cortical boundary

in a registered slice overlaid on a histological image. From

intensity-based registration (red contours) to boundary-based

rigid and nonrigid registration (green and yellow contours),

gradual improvement of a contour placement is noticeable in

multiple areas of a slice (indicated by red arrows).

IV. CONCLUSION AND FUTURE WORK

The proposed algorithm has the following advantages:

(i) It uses a novel hybrid intensity- and boundary-based

cost function, which reflects the contrast of image slice

intensities across the cortical surface boundary, and improves

the registration of the cortex. (ii) It allows registration of

individual, sparsely spaced histological sections. (iii) It mod-

els non-planar cross-sections by a smooth surface warped

in three-dimensional space, and extends existing techniques

of landmark-based TPS 2D warping to landmark-free 3D

warping of a slice. (iv) It combines 3D alignment and

warping in one optimization stage. The algorithm extends

the existing boundary-based registration approach, which is

based on a surface mesh model, to implicit representation of

cortical surfaces, and efficiently computes the cost function

in a level set framework. The cost function is applicable to

all choices of histological staining that provide the WM/GM

contrast.

Histological examination still remains the gold standard

for a precise characterization of the anatomy and pathology

of neural tissue. MR image contrast has a complex origin

that makes exact relationships between MRI and histology
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unclear; correlates of MRI findings with histology have

to be studied and validated. Accurate registration of high-

resolution MRI to cortical histology is essential for a quanti-

tative comparison of trans-cortical intensity profiles. The de-

scribed method has useful potential for various applications

in mapping of brain histology to 3D imaging, for example,

in building multi-modal 2D-3D atlases of rodent and human

brains, and in comparison of histology with MRI for a

better characterization of MRI-detectable or MRI-invisible

pathological features. The algorithm is not limited to slice

registration, but is generally applicable to rigid/nonrigid

boundary-based registration of partial-brain images.
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Fig. 2. Histological images (gray-scale) overlaid with contours of the
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