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Abstract— A method is proposed for automatic registration
of 3D preoperative magnetic resonance images of deformable
tissue to a sequence of its 2D intraoperative images. The
algorithm employs a dynamic continuum mechanics model
of the deformation and similarity (distance) measures such
as correlation ratio, mutual information or sum of squared
differences for registration. The registration is solely based on
information present in the 3D preoperative and 2D intraop-
erative images and does not require fiducial markers, feature
extraction or image segmentation. Results of experiments with a
biopsy training breast phantom show that the proposed method
can perform well in the presence of large deformations. This is
particularly useful for clinical applications such as MR-based
breast biopsy where large tissue deformations occur.

I. INTRODUCTION

Volumetric magnetic resonance (MR) and computed to-

mography (CT) images provide detailed anatomical informa-

tion for medical diagnosis and intervention. Surgical plans

based on pre-operative images often have to be updated using

information obtained from interventional imagers to compen-

sate for possible movement and deformation of the underly-

ing soft tissue. Long acquisition times restrict the amount

of data that can be collected intraoperatively. For example,

real-time MR imaging is only feasible when the volume of

the scan and image resolution are reduced. Consequently,

intraoperative images lack the detailed and comprehensive

information that is available in high-resolution preoperative

3D images. Furthermore, interventional MR and ultrasound

(US) images have lower signal-to-noise ratio than that of

diagnostic MR images [1].

Preoperative and intraoperative images can be fused in a

registration process to produce detailed up-to-date volumetric

data about the patient anatomy. Nonrigid registration algo-

rithms should be employed in medical applications involving

soft-tissue deformation, e.g. in breast imaging and biopsy

procedures. It should be noted that image registration is

an ill-posed problem by itself [2]. In addition, nonrigidity

of 3D/2D registration makes the problem ill-conditioned

and nonlinear. Therefore, the registration problem should be

regularized for a solution to exist.

Physics-based models associating geometry, dynamics and

material properties of the object can be used as a regularizer

in image registration. In breast imaging, finite-element (FE)

based continuum mechanics models have been used to pre-

dict mechanical deformation during MR-guided biopsy [3],
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and to validate nonrigid registration algorithms [4]. More-

over, they have been employed to model multi-object de-

formations in the abdominal region for deformable image

registration [5]. The similarities (or differences) between the

two images are used to deform the FE model in nonrigid

registration. In most cases, local image information such

as surfaces and extracted feature points are employed in

the calculation of external and internal forces applied to

the discretized FE mesh [6], [7]. In [3], the movement of

the breast tissue was tracked using landmarks tapped to its

surface.

The above methods are all concerned with 3D/3D or

2D/2D registration. They require various user interventions

such as affixing fiducial markers, extracting image features

and constructing surface models. In this paper, we propose

a FE model based method for deformable registration of

preoperative 3D to a sequence of intraoperative 2D MR

images. A dynamic linear elastic deformation model imposes

a regularization constraint on permissible volume transfor-

mations based on an image similarity criterion. The model

allows us to incorporate the dynamic behavior of tissue defor-

mation into the registration process; it establishes physically

meaningful temporal and spatial correlations among the 2D

images taken at successive sample times from different cross-

sections of the tissue. The model and image information are

fused through a filtering process that iteratively estimates

the deformation of the 3D volumetric image. The observa-

tion error for the filter can be produced based on sum of

squared differences (SSD), correlation ratio (CR), or mutual

information (MI) between corresponding 2D image slices.

II. METHODS

A. Static Model

Image registration involves finding a displacement field

u such that a transformed template image T[u] becomes

“similar” to a reference image R. The objective function to

be minimized is [2]:

J(u) = D(T [u], R) + αS(u); α ∈ ℜ+ (1)

where D is a distance measure between two images and

S is a regularization term that would ensure the resulting

displacement field is “reasonable”. A similarity measure with

a negative sign could also be used instead of the distance

measure. The linear elastic energy of the deformable body

is used as the regularization term in this paper where α

weights its relative importance compared with the distance

measure. The deformation model is discretized using FEM in

the spatial domain with a volumetric tetrahedral mesh. The

4880

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011

U.S. Government work not protected by U.S. copyright



linear elastic energy for the discretized model in (1) can be

written as [6]:

S(u) =
1

2
uTKu (2)

where K is the global stiffness matrix associated with the

volumetric mesh, and u is the vector of nodal displacements.

The displacement of any point of the image volume can be

computed using the shape function of the element containing

the point as follows

uin(x) =

4∑

i=1

Nel

i
(x)uel

i
(x) (3)

where uin(x) is the displacement for the internal point and

uel

i
(x) is the displacement of the vertex points of the element.

Nel
i
(x) is the linear shape function of the elements given

in [8]. If J in (1) has a minimum at u, its first derivative

must vanish, i.e.

∂J(u)

∂u
=

∂D(T [u], R)

∂u
+ αKu = 0 (4)

which can be rewritten as the following set of nonlinear

equations

Ku = f(u) = −
1

α

∂D(T [u], R)

∂u
(5)

Here f(u) is the vector of nodal forces applied to the mesh.

The solution to (5) is the displacement field corresponding

to the minimum of (1).

B. Dynamic Model

The force vector f(u) in (5) is a nonlinear function of

the displacement field u. An iterative numerical method has

to be employed to solve the nonlinear system of equations

in (5). To this end, we consider the following second-order

dynamic model for the motion of deformable objects [8]:

Mü+ Cu̇+Ku = f(u) (6)

Here M is the mass matrix of the elements concentrated at

nodes, and C = βM+γK is the damping matrix for constant

values of β and γ. It is noted that the steady-state equilibrium

of this dynamic system is the solution to the static system of

equations in (5). In (6), the dynamic forces Mü and Cu̇ tend

to smoothly drive the system towards this equilibrium. The

dynamic equations can be solved using existing implicit or

explicit numerical integration routines over time. A dynamic

model also allows for real-time intraoperative registration of

a dynamically changing organ. It provides a temporal corre-

lation model for the images taken at different sample times.

Such situations can arise, for example, in real-time MR

based biopsy interventions where the soft tissue undergoes

deformation due to the force of needle insertion. Therefore,

our proposed method can be used in such circumstances for

dynamic image registration.

The solution for (6) can be obtained more effectively by

using the transformation u = φv on the n finite element

nodal point displacements, where columns of φ are eigen-

vectors of M−1K [8]. With this change of variables, (6) can

be written as:

M̂v̈ + Ĉv̇ + K̂v = f̂ (7)

where M̂ = φTMφ, Ĉ = φTCφ, K̂ = φTKφ are diagonal

matrices, and f̂ = φT f . Assuming that M−1K is full

rank, the equilibrium equations become decoupled. The fast

modes of (7) can be eliminated without affecting the steady-

state solution, resulting in a significant reduction in the

computation time.

C. 3D/2D registration

Starting with an undeformed mesh, the deformation field

has to be continuously updated based on the dynamic model

in (7) and information from the 3D preoperative (unde-

formed) volume and the 2D slices of intraoperative (de-

formed) images. In an optimization paradigm, each iteration

would take the solution one step closer to the minimum

of the objective function (1). For example in a gradient-

decent search, the steps are proportional to the negative of the

gradient of the objective function at the current state. In our

algorithm, the “distance” between the current intraoperative

2D image and the corresponding slice of the 3D image is

the observation error in a Kalman-type filtering process for

the estimation of the mesh deformation.

For each 2D intraoperative image, the corresponding 2D

slice of the preoperative image is found based on the position

and the orientation of a virtual 2D interventional MR plane.

For any point y in the domain of reference (intraoperative)

image, its displacement in the template domain is computed

as:

dy = −λ∇D(T [u(y)], R); λ ∈ ℜ+ (8)

where R is the 2D reference (intraoperative) image and

T [u(y)] is the 2D template image interpolated from the

preoperative volume in each step. An analytical approach is

proposed in [9] to compute the derivative of three different

distance (similarity) measures. By letting h denote a generic

intensity comparison function, (8) can be written as:

dy = −λh(T [u(y)], R)∇T [u(y)] (9)

where ∇T [u(y)] is the gradient of the template image at y in

every iteration. The definitions of three distance (similarity)

measures SSD, CR and MI, and the corresponding intensity

comparison functions are given in [9]. It should be noted that

dy is a 3×1 vector and is not restricted to the plane of the

2D images.

The displacement of regular grid points of the 2D slice

are the observation errors in the filtering process and can

be related to the nodal displacements (system states) using

elemental shape functions. The discretized dynamic defor-

mation model (6) and observation equations can be written

in the following general form:

v(k + 1) = Av(k) +Bf̂

z(k) = Hv(k)
(10)
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Here v and z are state and observation vectors, and A,

B, and H are the state transition matrix, the model input

matrix and the model output matrix, respectively. Note that

H contains both the transformation matrix φ and the linear

shape function of the tetrahedral elements.

The system states, which include the deformation of the

3D mesh, are estimated using a Kalman-like filter at each

time step. The filter equations can be found in [10]. In (10),

f̂ is modeled as white Gaussian noise with probability dis-

tribution of p() = N(0, S). Each iteration of the registration

algorithm involves the following steps:

1) For each 2D reference plane from the intraoperative

volume, find the corresponding 2D template plane from the

intraoperative volume.

2) Using (9), find the displacement field for the regular

grid points of the 2D template plane.

3) Update the state estimates based on the observation

prediction error zk−Hv̂−
k

using v̂k = v̂−
k
+Kk(zk −Hv̂−

k
).

Here v̂−
k

is the vector of state estimates from the pervious

step and Kk is the filter gain. The displacement of FE mesh

vertices points can then be updated using u = φv.

In case of registering a static deformed tissue, the 3D

estimation will eventually converge to a steady-state solution.

In a dynamic case where the object deformation varies over

time, the estimated 3D deformation at each step represents

the object state at the corresponding time.

III. EXPERIMENTS AND RESULTS

A triple modality biopsy training breast phantom (CIRS

model 051) is used for obtaining the experimental data. Two

3D volumes of high-resolution (512×512×136) MR images

have been taken from the undeformed and deformed phantom

using a GE 3T Signa MRI machine. This is essentially a

static deformable registration problem. The apparatus devel-

oped for deforming the phantom during imaging is shown

in Fig. 1 (a). This structure is made using plexiglass and

is MR compatible. There are two stabilizing plates between

which can compress the phantom. Four pairs of screws and

nuts which are connected to the plates are used to adjust the

distance between them to deform the phantom. Moreover,

four capsules of vitamin E are placed on the framework as

landmarks to match the coordinates of the deformed and

undeformed image data after taking images. In Fig. 1 (b),

an x-y view of the undeformed (top) and deformed (bottom)

image data are also shown.

A cubic mesh of tetrahedral elements which contains the

whole volume of the deformed and undeformed data is

created using the COMSOL Multiphysics and Simulation

Software. In Fig. 2, the volumetric mesh used for registration

is depicted before (a) and after (b) deformation with two

2D planes across the mesh. The mesh has 15112 elements

and 3067 nodal points. Young’s elasticity modulus E and

Poisson’s ratio ν which characterize an isotropic linear elastic

material [8] are chosen as 105 and 0.45, respectively. Since

the model is essentially used to regulate the registration

process, its geometrical or material accuracy is not critical

for the success of the approach. The model parameters can

x

y
z

(a) (b)

Fig. 1. (a) the apparatus, (b) x-y views of undeformed (top) and deformed
(bottom) images

(a) (b)

Fig. 2. (a) undeformed, (b) deformed FE mesh with 2D planes across them

be tuned to obtain a desirable outcome. The two 2D planes

across the FE mesh are demonstrating two different 2D inter-

ventional MR planes (reference) (a) and the corresponding

2D planes in the preoperative data set (template) (b).

As can be seen from Fig. 1(b), the phantom undergoes

both translation and deformation for which the registration

algorithm has to account. In Fig. 3, the registration results

utilizing a sequence of 15 2D intraoperative planes are

shown. All these planes pass through the center point of

the data volume and the normal vector to the plane is

~n = [0 cos(θ) sin(θ)]T where 0 ≤ θ < 180◦. Registration

of the template images (left column) to references images

(middle column) produces deformed template images (right

column) which are very similar to the reference images.

Here the registration is performed based on SSD and other

measures are computed for the region of interest in each

iteration. In Fig. 4(a), the evolution of similarity (distance)

measures between 3D volumes of pre- and intraoperative

data during the iterative registration process are shown. The

change of similarity (distance) measures between the 2D

reference and template images are also displayed in Fig. 4(b).

It can be seen that for every fixed 2D reference plane, the

model is updated in 15 iterations.

A quantitative comparison of the three distance (similarity)

measures for registration performed based on each of these

measures is given in Table 1. The gray scale values for

the experimental images are between 0 and 255. For a

better comparison, normalized mutual information (NMI) is

computed instead of MI because 0≤NMI≤2 for any two

sets of image data. Also the value of SSD is divided by the
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Fig. 3. Top to bottom: x-y, y-z, and x-z views; left to right: preoperative
(template), intraoperative (reference), and registered (deformed template)
images
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Fig. 4. The evolution of distance and similarity measures throughout the
registration process (a) 3D volumes, (b) sequences of 2D slices. A total
number of 15 2D slices have been used for each of which the model is
updated in 15 iterations

number of voxel points. The perfect match happens when

SSD is close to zero, CR is close to 1 and NMI is close

to 2. It can be concluded from Table 1 that SSD-based

registration outperforms both CR and MI-based registration

methods. The registration algorithm works well with the

SSD measure since the images are from a single modality.

MI is generally an effective similarity measure for 3D

multi-modality registration. However, in our case of 3D/2D

registration, a relatively small number of pixels is available

to form histogram. The resulting sparse joint histogram is the

main reason for the relatively poor performance of the MI-

based registration compared to the other measures. Finally,

it should be noted that the deformation for the experimental

data is static and rather large. The results are expected to

further be improved when using the algorithm to dynamically

track the deformation of a soft tissue.

TABLE I

REGISTRATION BASED ON DIFFERENT MEASURES

measures SSD CR NMI

SSD-based 290.1 0.938 1.141

CR-based 341.8 0.926 1.123

MI-based 450.3 0.882 0.970

IV. CONCLUSIONS AND FUTURE WORK

A model-based 3D/2D deformable image registration algo-

rithm was proposed in this paper. The registration was carried

out within a state estimation framework using a dynamic

FE linear elastic deformation model. The state estimates are

updated using similarity measures between the intraoperative

2D MR image and the corresponding 2D plane of the

preoperative MR volume. The algorithm is only based on

pixel and voxel values of pre- and intraoperative images and

does not require image segmentation or feature extraction.

Experimental results carried out with a breast phantom tissue

showed that a 3D volume of preoperative MR images can be

effectively registered to a sequence of 2D intraoperative MR

images even in the presence of a very large deformation.

This makes the algorithm particularly suitable for real-time

tracking of tissue deformation using 2D interventional MR

images in applications such as breast biopsy.

In the future, the algorithm will be extended to 3D/2D

registration of pre-operative MR or CT to intraoperative US

images. The proposed algorithm is computationally intensive

but the computations are highly parallel in nature. We are

currently working on the implementation of the algorithm on

a graphics processing unit (GPU) to speed up the registration

for real-time applications.
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