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spatio-temporal smoothness to more accurately model and 
estimate motion of the lung. For comparing the accuracy of 
the proposed method, we employ the average angular error 
(AAE) and weighted angular error (WAE) between the 
computed motion fields and ground truth motion known at 
number of 2-D landmark points within the lung volume. 
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Abstract—A novel energy function for computing planar 
optical flow from X-ray CT images was presented and reported 
in detail in [1]. The technique combines four terms: brightness 
constancy, gradient constancy, continuity equation based on 
mass conservation, and discontinuity-preserving spatio-
temporal smoothness. Both qualitative and quantitative 
evaluation of the proposed method demonstrated that the 
method results in significantly better angular errors than 
previous well-known techniques for optical flow estimation. A 
multi-scale approach to motion field computation based on this 
framework is presented in this paper. The proposed approach 
significantly speeds up the calculations, realizing computational 
savings. Additionally, an approach to determination of 
optimum values of scalar weights in the energy function is 
herein proposed. Normalized mutual information measured 
between the first image warped with the estimated motion and 
the second image is used to determine the optimum value for 
weighting parameters. 

It should be noted that in the past a number of papers have 
proposed techniques for non-rigid lung motion estimation [2, 
7-9]. These have for the most part been based on free-form 
deformation paradigm. In comparison to such techniques, 
our optical flow framework has the advantage that it 
provides the possibility to enforce physical constraints on 
the flow field. Although the theoretical basis of our present 
approach was previously described in [1], the primary 
contributions of the present paper are a fast implementation 
through use of multiple computational scales as well as 
determination of optimum parameters for the energy 
function through use of normalized mutual information. I. INTRODUCTION 

Deformable image registration has received much 
attention in the literature [3-6]. Medical image registration 
may involve registration of longitudinally acquired images 
to elucidate anatomical changes occurring due to disease 
progression, or from result of therapy. However, it can also 
be used to track temporally acquired data such as 4D lung 
images acquired with X-ray computed tomography (CT). 
Registration of thoracic CT images is of particular interest to 
the medical community since it can provide a mechanism to 
determine the respiratory motion while the compressible 
nature of lung tissue which results in varying voxel 
intensities makes accurate deformable registration of 4D CT 
thoracic image data difficult to achieve. The ability to track 
the motion of lung using 4D CT imaging may give more 
information on regional lung function, assessment of disease 
severity, and inform better about prognosis. With this as the 
driving goal, we arrive at a new variational formulation for 
optical flow and compare its performance to that of well-
known optical flow methods. 

II. METHOD 
As outlined in [1], in order to derive a variational 

formulation for our optical flow method, below, we list the 
constraints of interest. 

(I) Ideally, the gray value of a pixel should not change 
after displacement: 

ܫ   (1) ሺܺ ൅ ܹሻ ൌ ሺܺሻܫ

In (1) ܫ is the image intensity as a function of space and 
time, ܺ ൌ׷ ሺݔ, ,ݕ ܹ ሻ், andݐ ൌ׷ ሺݑ, ,ݒ 1ሻ் is the displacement 
vector field between two subsequent images. This is a 
nonlinear equation in ݑ and ݒ. Its linearized version yields 
the well-known optical f t ]: low constrain  [10

ݑ௫ܫ ൅ ݒ௬ܫ ൅ ௧ܫ ൌ 0  (2) 
known as the optical flow equation, first described in [10]. 
(II) In the case of thoracic CT images, tissue densities and 

consequently voxel intensities, change from one image to the 
next due to breathing. Despite local tissue density 
fluctuations caused by perfusion, we assume the imaged 
intensities follow a conservation principle in analogy to 
mass conservation in fluid flow. In fact, one can show that if 
it can be assumed that the Hounsfield unit is proportional to 
density then the two conservation principles are equivalent. 
Application of the conservation principle to a temporally 
varying

The basic assumption in standard optical flow estimation 
is grey value constancy assumption which is not particularly 
applicable to lung motion estimation. In this work, we 
include gradient constancy, mass conservation, as well as  
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where ܸ ൌ ሺݑ,  ሻ is the velocity field. Equation (4) is aݒ
more general constraint for deformable object motion in 
comparison to the classic Horn-Schunck optical flow 
constraint equation shown in (2). 

(III) In order to allow variations in the grey value and to 
help determine the displacement vector by a criterion that 
favors matching moving edges, a constraint based on image 
gradients is also incorporated: 

ሺܺܫ׏ ൅ ܹሻ ൌ  ሺܺሻ  (5)ܫ׏

(IV) Finally, in order to regularize the solution, spatio-
temporal smoothness of t l s adopted: he flow fie d i

ଷu|ଶ ൅ ׏| ଷv|ଶ   (6)׏|

where ׏ଷ ൌ׷ ሺ߲௫, ߲௬, ߲௧ሻ். Therefore, the energy functional 
that penalizes deviations from these model assumptions is 
measured by:  

,ݑሺܧ ሻݒ ൌ ஽ܧ  ൅ ௌܧߙ ൌ ׬ ߰ሾ|ܫሺܺ ൅ ܹሻ െ ሺܺሻܫ ൅ .׏ܫሺߚ ܸሻ|ଶ ൅Ω
 3v2݀ܺ     (7)׏3u2൅׏߰ߙሺܺሻ2݀ܺ൅ Ωܫ׏൅ܹെܺܫ׏ߛ

where ߚ can only be zero or one: zero when the object is 
incompressible and one when the object is compressible. 
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 is a modified ܮଵ norm 
which is convex and offers advantages in the minimization 
process namely robustness to outliers. Since ߝ is only 
utilized for numeric ns, it can be set to a fixed value 
(we chose 0.001). 

al reaso

A minimizer of ܧሺݑ,  ሻ must fulfill the Euler-Lagrangeݒ
equations: 
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with the iteration variable ܹ௞ instead of ܹ, ܹ௞ାଵ will be 
the solution of; 
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To remove the nonlinearity in כܫ
௞ାଵ, first order Taylor 

expansion yields 
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where  ݑ௞ାଵ ൌ ௞ݑ ൅ ௞ାଵݒ  &  ௞ݑ݀ ൌ ௞ݒ ൅  .௞ݒ݀
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As the only remaining nonlinearity is due to ߰ᇱ, and ߰ has 
been chosen to be a convex function, the remaining 
optimization problem is a convex problem; i.e., there exists a 
unique minimum. To remove the remaining nonlinearity in 
߰ᇱ, a second, inner fixed point iteration loop is applied. Let ݈ 
denote the iteration index for this inner loop. The fixed point 
variables ݀ݑ௞,௟ and ݀ݒ௞,௟ are both initialized with 0. 
Therefore, the linear system of equations in ݀ݑ௞,௟ାଵ and 

௞,௟ା݀ݒ ଵ: 

ሺ߰஽௔௧௔
ᇱ ሻ௞,௟ ቆܫ௫

௞൫ܫథ
௞ ൅ ௫ܫ

௞݀ݑ௞,௟ାଵ ൅ ௬ܫ
௞݀ݒ௞,௟ାଵ൯ ൬1

൅ ߚ ቀܫ௞׏. ሺݑ௞ ൅ ,௞,௟ାଵݑ݀ ௞ݒ ൅ ௞,௟ାଵሻቁ൰ݒ݀

൅ ߛ ቀܫ௫௫
௞ ൫ܫ௫థ

௞ ൅ ௫௫ܫ
௞ ௞,௟ାଵݑ݀ ൅ ௫௬ܫ

௞ ௞,௟ାଵ൯ݒ݀

൅ ௫௬ܫ
௞ ൫ܫ௬థ

௞ ൅ ௫௬ܫ
௞ ௞,௟ାଵݑ݀ ൅ ௬௬ܫ

௞ ௞,௟ାଵ൯ቁݒ݀

െ ߚ ቀܫ௞׏. ሺݑ௞ ൅ ,௞,௟ାଵݑ݀ ௞ݒ ൅ ௞,௟ାଵሻቁݒ݀ ቀ1

൅ ൫ܫథ
௞ ൅ ௫ܫ

௞݀ݑ௞,௟ାଵ ൅ ௬ܫ
௞݀ݒ௞,௟ାଵ൯ቁቇ

െ ሺሺ߰ௌ௠௢௢௧௛ݒ݅݀ ߙ
ᇱ ሻ௞,௟ሾ׏ଷሺݑ௞ ൅ ௞,௟ାଵሻሿሻݑ݀ ൌ 0 

 (13-1) 

ሺ߰஽௔௧௔
ᇱ ሻ௞,௟ ቆܫ௬

௞൫ܫథ
௞ ൅ ௫ܫ

௞݀ݑ௞,௟ାଵ ൅ ௬ܫ
௞݀ݒ௞,௟ାଵ൯ ൬1

൅ ߚ ቀܫ௞׏. ሺݑ௞ ൅ ,௞,௟ାଵݑ݀ ௞ݒ ൅ ௞,௟ାଵሻቁ൰ݒ݀

൅ ߛ ቀܫ௫௬
௞ ൫ܫ௫థ

௞ ൅ ௫௫ܫ
௞ ௞,௟ାଵݑ݀ ൅ ௫௬ܫ

௞ ௞,௟ାଵ൯ݒ݀

൅ ௬௬ܫ
௞ ൫ܫ௬థ

௞ ൅ ௫௬ܫ
௞ ௞,௟ାଵݑ݀ ൅ ௬௬ܫ

௞ ௞,௟ାଵ൯ቁݒ݀

െ ߚ ቀܫ௞׏. ሺݑ௞ ൅ ,௞,௟ାଵݑ݀ ௞ݒ ൅ ௞,௟ାଵሻቁݒ݀ ቀ1

൅ ൫ܫథ
௞ ൅ ௫ܫ

௞݀ݑ௞,௟ାଵ ൅ ௬ܫ
௞݀ݒ௞,௟ାଵ൯ቁቇ

െ ሺሺ߰ௌ௠௢௢௧௛ݒ݅݀ ߙ
ᇱ ሻ௞,௟ሾ׏ଷሺݒ௞ ൅ ௞,௟ାଵሻሿሻݒ݀ ൌ 0 

 (13-  2)
Discretization yields a linear system of equations, which 

can be solved by Successive Over Relaxation (SOR). Let ݉ 
denote the iteration index for the SOR iterations, then the 
iteration scheme for solving the linear system is: 
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where Β ൌ ߚ ቀܫ௞׏. ሺݑ௞ ൅ ,௞,௟ݑ݀ ௞ݒ ൅  .௞,௟ሻቁݒ݀
It can be shown that this algorithm will be simplified to 

the method proposed by Brox et al. [11] when ߚ ൌ 0, 
while it would result in the modified version of the Wildes 
method [12] with ߛ ൌ 0. In the simplest form, with both 
ߚ ൌ 0 and ߛ ൌ 0, the proposed method simplifies to Horn- 
Schunck method [10], though with spatio-temporal 
smoothness. 

Since the proposed method converges to the estimated 
motion in an iterative form, a multi-scale framework was 
used to speed up the calculations realizing significant 
computational savings. A multiresolution strategy helps to 
improve computational efficiency and to avoid local 
minima [5]. Both frames are first downsampled by a factor 
of 2 in each dimension in order to reduce the 
computational time. The downsampled images are then 
registered in the multiresolution framework. Once the 
registration is completed, the warped image is upsampled 
so that it has the same size as the reference image. 

If necessary, the number of scales in the multiresolution 
approach just described could be further increased with the 
warped image propagated to the next finer level and used 

as a starting transformation for that level. 
While the proposed method leads toward an accurate 

motion estimation, the number of weighting factors- that is 
 and ݈- and their various combinations is a significant ,ߛ ,ߙ
challenge. To find the optimum weights, normalized 
mutual information (NMI)[13] has been used as a 
similarity measure between the first frame warped with the 
calculated motion field and the second frame. NMI is 
essentially used here as the yardstick to compare the 
accuracy of the estimated motion for different weighting 
factors [13-16]. Fig. 1 shows a similarity calculation 
between the first warped frame and the second frame for 
five different alpha, that is from 10 to 50 which 
increments by 10, five different gamma, that is from 50 to 
210 which increments by 40, for ݈ ൌ 5, 6. 

III. RESULTS 
The proposed method has been applied on some well-

known images where the scenario of mass conservation 
does or does not hold. The related results have been 
reported in detail in [1]. For both qualitative and 
quantitative evaluation of the proposed method, Popi-
model data-set of lung deformation has been used [17]. It 
is a pixel-based and point-validated breathing thorax 
model which is used to validate the results of our method. 
The anonymized respiration-correlated 4D CT image 
consists of 10 3D CT images sampling the entire 
respiratory cycle. Each 3D image volume is made up of 
141 axial slices with a slice thickness of 2mm. Each slice 
is a 2D image with size 512x512 with an isotropic in-plane 
resolution of 0.97 mm. Landmarks are defined by experts 

Figure 1: Similarity calculation between the first warped image 
and the second image. This Graph shows similarity calculation in 
terms of five gamma (ߛଵ~ߛହ)and five alpha (ߙଵ~ߙହ) values for two 

different  number of levels (݈ଵ, ݈ଶ). Figure 2: Color wheel for encoding motion vectors.
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where ݊ denotes the total number of the landmark 
points. This expression not only measures the spatial 
angular error between the estimated flow vector and the 
correct vector, but also the differences in the magnitude of 
both vectors, since it evaluates the angular error of the 
spatio-temporal vector ሺݑ௖, ,௖ݒ 1ሻ. 

Figure 3: Top row: coronal, and bottom row: transversal planes of the lung. From left to right: (a) First frame. (b) Calculated vector 
field superimposed on the first frame with ߙ ൌ 50, ߛ ൌ 150, ߚ ൌ 1. Note that these parameters were also used in the 6th row of table 1

labeled "Proposed Method". (c) Color coded diagram of the related vector filed (based on Figure 1). 

in all of the 3D CT image volumes that make up the 4D 
CT data. Since the implemented algorithms work on 
planar images in time, the only landmarks that were used 
for validation of our technique were those that have planar 
motion in subsequent frames. Fig. 3 shows calculated 
vector field in all three anatomical orientations. The 
average computational time to arrive at these results were 
38 seconds within a multi-scale framework on a Dell 5160 
machine with a quad-core Xeon 3.00 GHz processor. As 
shown in the color wheel (Fig. 2) used to visualize flow 
fields in this paper, smaller vectors are darker while the 
color indicates direction of movement. Whereas images in 
Fig. 3 give a good visual impression of the results, the fact 
that ground truth motion is available for the landmark 
points also offers the possibility to have a quantitative 
measure of the quality of the estimated optical flow. Such 
a quantitative measure to assess and compare the 
performance of the method has been introduced with the 
so-called average angular error (AAE) in [18] and 
weighted angular error (WAE) in [2]. Assume the 
computed motion field ௖ܸ ൌ ሺݑ௖,  ௖ሻ and the ground truthݒ
vector field ௚ܸ ൌ ሺݑ௚,  ௚ሻ, the AAE of the calculated flowݒ
field can be computed by 

In the metric shown in (16), the individual angle 
deviations have been weighed by the magnitude of the 
landmark displacement vector; normalized by the sum of 
magnitude of all ground truth vectors. The reason for this 
is to emphasize angle deviation of points which have large 
displacements, and similarly to de-emphasize the angle 
deviation of points wh a l r isplacement. ich h ve a sma le  d

ଵ
∑ห௏೒ห

∑ሺห ௚ܸห. cosିଵ ௏೒.௏೎

ห௏೒ห|௏೎|

ܧܣܣ ൌ׷ ଵ
௡

∑ ݏ݋ܿܿݎܽ ൭ ሺ௨೎ሻ೔ሺ௨೒ሻ೔ାሺ௩೎ሻ೔ሺ௩೒ሻ೔ାଵ

ට൫ሺ௨೎ሻ೔
మାሺ௩೎ሻ೔

మାଵ൯൫ሺ௨೒ሻ೔
మାሺ௩೒ሻ೔

మାଵ൯
൱௡

௜ୀଵ      (15) 

ሻ        (16) 

Table-1 reports these results in comparison with the 
well-known optical flow methods which were reported in 
[2]. 

IV. CONCLUSIONS 
In conclusion, we have proposed a multi-scale 

implementation of an optical flow framework based on a 
mass conservation and image gradient constancy, 
previously derived and reported in [1]. In addition to 
multi-scale implementation, a novelty of the approach  
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Table 1: Quantitative evaluation and comparison of the already implemented methods [2] and the proposed method. AAE and WAE stand 
for average angular error and weighted angular error, respectively. Mean errors are shown with (standard deviation) for each case. 

Method AAE WAE 
Horn-Schunck(Global) [10] 92.65° (9.3°) 91.4° (10.6°) 
Lucas-Kanade(Local) [19] 92.62° (11.5°) 92.22° (12.8°) 
CLG(Local-Global) [20] 89.88° (9°) 89.7° (9.8°) 

Proposed Method simplified to Brox et al. [11] 28.93° (3.7°) 36.1°(3.9°) 
Proposed Method simplified to Wildes [12] 28.22° (3.5°) 35.89° (3.8°) 

Proposed Method 26.98° (3.1°) 34.2° (3.2°) 

proposed in this paper is determination of the optimum 
values of scalar weights in the energy function based on 
the normalized mutual information similarity metric 
measured between the first image warped with the 
estimated motion and the second image. The proposed 
optical flow framework provides the possibility to enforce 
physical constraints on the velocity field to handle the 
difficulties inherent in the thoracic CT image registration 
problem. As shown in table 1, the proposed method 
performs well with respect to both AAE and WAE, 
meaning that amongst the optical flow methods which 
were evaluated, we expect better estimation of the lung's 
planar motion using the proposed algorithm. This 
motivates the use of physical constraints which were 
utilized in our numerical implementation 
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