
GPU Implementation of a Deformable 3D Image Registration Algorithm

Hamed Mousazadeh, Bahram Marami, Shahin Sirouspour and Alexandru Patriciu

Abstract— We present a parallel implementation of a new
deformable image registration algorithm using the Computer
Unified Device Architecture (CUDA). The algorithm co-registers
preoperative and intraoperative 3-dimensional magnetic reso-
nance (MR) images of a deforming organ. It employs a linear
elastic dynamic finite-element model of the deformation and dis-
tance measures such as mutual information and sum of squared
differences to align volumetric image data sets. Computationally
intensive elements of the method such as interpolation, displace-
ment and force calculation are significantly accelerated using
a Graphics Processing Unit (GPU). The result of experiments
carried out with a realistic breast phantom tissue shows a 37-
fold speedup for the GPU-based implementation compared with
an optimized CPU-based implementation in high resolution
MR image registration. The GPU implementation is capable
of registering 512x512x136 image sets in just over 2 seconds,
making it suitable for clinical applications requiring fast and
accurate processing of medical images.

I. INTRODUCTION

Medical image registration is the process of aligning

images so that corresponding features can be easily matched.

This process plays a significant role in clinical interven-

tions such as biopsy, image-guided surgery and radiotherapy

planing. A fast and reliable registration algorithm allows for

surgical plans based on preoperative images to be updated

using real-time image feedback to compensate for tissue

movements/deformations.

Deformable registration algorithms can account for both

rigid and non-rigid tissue transformations. However, the

complexity of these methods often significantly increases

the runtime in conventional single CPU-based implementa-

tions [1]. Recently, GPUs, Field-Programmable-Gate-Array

(FPGA) devices and multi-processor systems have been used

to accelerate image registration algorithms. In [2], parallel

processing with 64 CPUs using a shared memory architecture

has resulted in average runtimes of 67 seconds and 89

seconds for non-rigid registration in intraoperative brain

deformation analysis and contrast-enhanced MR mammogra-

phy, respectively. Maintenance and acquisition costs are the

main drawbacks of such parallel computing systems [3].

FPGA-based computing architectures are highly customiz-

able and therefore can significantly speed up computations, if

properly designed. A study of rigid registration using FPGAs

is presented in [4]. GPUs are less expensive, and easier

to program than FPGAs, making them widely popular in

H. Mousazadeh is with the School of Biomedical Engineering, McMaster
University, Hamilton, Ontario L8S4L8 , Canada

B. Marami, S. Sirouspour and A. Patriciu are with the Depart-
ment of Electrical and Computer Engineering, McMaster University,
Hamilton, Ontario L8S4L8 , Canada. Please send correspondence to
sirouspour@ece.mcmaster.ca

scientific computing applications in recent years. Near real-

time registration can be achieved with recent advances in

the GPU technology [5]. A GPU-based implementation of

2D and 3D rigid and nonrigid registration algorithms was

presented in [6]. A runtime of about one minute was reported

for 3D registration of 256x256x128 data sets.

The Computer Unified Device Architecture (CUDA) pro-

vides a powerful and user-friendly programming environment

for GPU-based scientific computing applications including

those in medical imaging. We have recently developed a

new deformable image registration algorithm that employs a

dynamic linear elastic deformation model in conjunction with

image similarity measures such as sum of squared differ-

ences (SSD), mutual information (MI), and correlation ratio

(CR) [7]. The algorithm involves computationally expensive

tasks such as interpolation, solving a system of second-

order differential equations, finding the 3D deformation using

linear shape functions on tetrahedral finite elements, and

solving a large linear system of equations based on the

conjugate gradient method. In this paper, we report an

implementation of the algorithm for 3D-3D MR registration

based on SSD on a CUDA capable NVIDIA GTX 480

GPU. We have carried out experiments with a realistic breast

phantom in order to volumetrically register high-resolution

MR images.

II. METHODS

A. Mathematical Formulation of the Registration Problem

The registration problem can be formulated as finding

the displacement field u that minimizes the following cost

function:

J(u) = D(T [u], R) +
α

2
uTKu; α ∈ ℜ+ (1)

where D is a distance measure between the reference R and

the deformed template T [u] images. The second term in (1)

is the linear elastic energy of the deformed object which is

weighted by a constant value α. This regularization term is

based on a physical model for the deformation that would

ensure that the resulting solution is “reasonable”.

We employ the finite element method (FEM) to discretize

the deformation model in the spatial domain using a vol-

umetric tetrahedral mesh. Therefore in (1), K is the global

stiffness matrix associated with the volumetric mesh, and u is

the vector of nodal displacements. The nodal displacements

are propagated to any point x of the template image volume

using the shape functions of the element containing the point:

uin(x) =

4∑

i=1

Nel
i (x)uel

i (x) (2)

978-1-4244-4122-8/11/$26.00 ©2011 4897

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011

Crown

where uin(x) is the displacement for the internal point

and uel
i (x) is the displacement of the nodal points of the

element. Nel
i (x) is the shape function of the elements which

is explained in details in [8]. If J in (1) has a minimum at

u, its first derivative must vanish, i.e.

∂J(u)

∂u
=

∂D(T [u], R)

∂u
+ αKu = 0 (3)

This equation can be written as a set of nonlinear finite

element equilibrium equations for static analysis

Ku = f(u) (4)

where f(u) = − 1
α

∂D(T [u],R)
∂u

is the vector of concentrated

nodal forces applied to the volumetric mesh. The solution

to (4) will provide the displacement field corresponding to

the global minimum of the objective function (1).

B. Dynamic Finite Element Model

The force vector f(u) in (4) is a nonlinear function of

the displacement field u. An iterative numerical method has

to be employed to solve the nonlinear system of equations

in (4). To this end, we consider the following second-order

dynamic model for the motion of deformable object [8]:

Mü+ Cu̇+Ku = f(u) (5)

where M is the mass matrix of the elements concentrated

at nodes, and C = βM + γK is the damping matrix for

constant values of β and γ. The steady-state equilibrium of

this dynamic system is the solution to the static system of

equations in (4). In (5), the dynamic forces Mü and Cu̇

tend to smoothly drive the system towards this equilibrium.

The dynamic system of equations can be solved using

existing implicit or explicit numerical integration routines.

The solution can be obtained more effectively by using

the transformation u = φv on the n finite element nodal

point displacements, where columns of φ are eigenvectors

of M−1K [8]. With this change, (5) can be written as:

M̂v̈ + Ĉv̇ + K̂v = f̂ (6)

where M̂ = φTMφ, Ĉ = φTCφ, K̂ = φTKφ are diagonal

matrices, and f̂ = φT f . Assuming that M−1K is full rank,

the finite element equilibrium equations are decoupled. The

fast modes of (6) can be eliminated without affecting the

steady-state solution, resulting in a significant reduction in

the computation time.

C. Algorithm

In each iteration of the algorithm, the nodal forces f(u)
have to be computed and then used to drive the original

dynamical system in (5) or the decoupled reduced system in

(6). The registration solution is obtained when the system

reaches its steady state. In this paper, we use the SSD [9] as

the distance measure because it is computationally efficient

and works relatively well in single modality registration.

Therefore, the force vector at any nodal point can be com-

puted as [9]:

f(ui) = −
1

α
(T (pi + ui)−R(pi))∇T (pi + ui) (7)

where f(ui) is a 3×1 vector, ∇T (pi + ui) is the gradient

of the deformed template image at the deformed nodal point

pi + ui. T (pi + ui), R(pi) and ∇T (pi + ui) are computed

using the trilinear interpolation algorithm at each iteration.

When (6) reaches an equilibrium, the resulting displacement

of the finite element nodal points u can be used to calculate

the displacement of the regular 3D high-resolution grid of

the template image based on the shape function (2).

Equation (7) shows that the force vector is computed

based on the pixel values and the gradient of the template

image only at the nodal points. Obviously, the registration

accuracy is improved by increasing the resolution of the

finite element mesh at the expense of a greater computational

load. In order to use the whole information of the reference

and template images, displacements which are computed in

a finer 3D regular grid xp inside the image volume are

used to find the nodal point forces. The displacement of

the regular grid are computed according to (7), i.e. ∆x =
−κ (T (xp+u)−R(xp))∇T (xp+u), where κ ∈ ℜ+, xp and

xp+u represent the original and the deformed grid points in

each iteration. Nodal forces can be approximated based on

∆x using the inverse of the shape function. This requires

solving a linear system of equations of the form Af = b,

where A is a long matrix derived from the linear shape

function of tetrahedral elements and vector b results from

∆x of the regular grid.

III. GPU IMPLEMENTATION

We have implemented our registration algorithm on

NVIDIA’s GeForce GTX 480 GPU which has 15 streaming

multiprocessors, each with 32 streaming processors (SPs),

i.e. a total of 480 SPs. The hardware provides support for the

execution of thousands of threads in parallel with minimum

scheduling overhead. The threads are grouped in blocks and

the blocks are organized in a grid. The flowchart in Fig. 1

summarizes the algorithm.

Fig. 1. Registration algorithm flowchart

A. Implementation Steps

1) Trilinear interpolation: this step requires trilinear inter-

polations of the template image and its directional gradients

at xp+u.

2) Compute force: the over-determined system of equa-

tions Af = b is solved using the linear least squares and

4898

conjugate gradient method to compute the vector of nodal

forces.

3) Displacement of nodal points: having computed f , f̂

is calculated and the reduced system of equations in (6) is

solved for one time step; the original displacement field is

computed from u = φv.

4) Displacement of 3D grids: having computed u, the

deformed 3D grid in the template image can be obtained

from the deformed finite element mesh using the linear shape

function of the tetrahedral elements. The final high-resolution

deformed image can be computed similarly.

5) Distance measure: the SSD between the deformed

template and the reference images is computed. The iter-

ations stop when the relative error in the SSD falls below a

threshold, i.e.

g(u) =
|SSD(ut)− SSD(ut−1)|

SSD(ut−1)
< δ (8)

where ut and ut−1 are the displacement vectors at the current

and previous iterations, respectively.

B. Program Optimization

GPU hardware provides support for massively parallel

computing but the execution resources are obviously limited

and shared between the execution threads. Therefore, the

block and gird size and the memory use have a great

influence on the execution performance [10]. Due to lack

of space, only Step 4 of the algorithm is discussed below

while similar arguments apply to the other steps.

Step 4 computes the displacement field using the shape

function (2) of a volumetric mesh with 2335 tetrahedral

elements and 515 nodes, encompassing a 512x512x136

image and a 128x128x50 regular grid. Fig. 2 shows the

execution time for this step based on different host memory

configurations. The memory transfer portion, memcpy in

Fig. 2, includes both host (CPU) to device (GPU) and device

to host transfers. The regular pageable memory, M1, has the

highest runtime of 19.23 ms which includes the kernel time

plus the memory transfer time. The mapped memory, M2,

maps a block of page-locked host memory into the device.

This block has two addresses in host and device and thus

the programmer does not need to explicitly allocate a block

in GPU for memory transfer [10]. In fact this data transfer

is implicitly performed by the kernel and hence its time is

included in the kernel time. The write-combined memory

configuration, M3, exhibits the best performance of all three

with a total runtime of 10.43 ms. M3 transfers data across

the Peripheral Component Interconnect Express (PCIe) more

quickly and increases the performance especially when GPU

reads the buffer that is written by CPU.

The performance of a few possible CUDA thread config-

urations in Step 4 of the algorithm are compared in Table I.

Configuration 3 has the best performance in terms of kernel

execution time. Configurations 1 and 2 have relatively poor

performance due to insufficient use of execution resources

such as registers. Similarly, Configurations 4 and 5 are not

Fig. 2. Total execution time (memcpy + kernel) is shown for displacement.
Three types of host memories have been used. M1 is the regular pageable
memory, M2 is the mapped memory and M3 is the write-combined memory.

as efficient because of excessive use of registers and other

execution resources.

IV. RESULTS

A triple modality biopsy training breast phantom (CIRS

model 051) has been used for obtaining 3D volume high res-

olution (512x512x136) MR images in both the un-deformed

and the deformed states. Fig. 3 shows an MR compatible

plexiglass structure and four capsules of vitamin E that

are mounted on the framework as landmarks to match

the coordinates of the deformed and un-deformed images.

COMSOL Multiphysics and Simulation software is used

just to create a cubic finite element mesh of 7502 linear

tetrahedral elements with 1601 nodal points. Using this

mesh, we would have 4803 decoupled equations in (6). In

our experiments, we only used 500 slowest modes of (6)

for solving the dynamic system. The deformation model is

used as a tuneable constraint on the registration process

and therefore exact material and geometrical properties of

the tissue are not required in the model. The cubic FE

mesh encompasses the whole volume of deformed and un-

deformed data and a 20x30x10 finer regular grid (see Section

II-C), with no need for the segmentation of image.

A. Execution Time

The algorithm converges to a solution after 15 iterations.

The CPU execution time for the 3D high resolution image

registration is 82.83 sec. compared to only 2.19 sec. for

the GPU, i.e., a 37-fold speedup is achieved. The CPU

implementation which is written in standard C ran on a

TABLE I

GPU RUNTIME AND GFLOP/S OF THE CUDA KERNEL FOR 3D GRID

DISPLACEMENT FIELD

Config Block Size (B), Grid Size (G) GFLOP/s time (ms)

1 B(1,64), G(1,38400) 25.84 1.87

2 B(1,128), G(1,19200) 28.94 1.67

3 B(1,256), G(1,9600) 29.65 1.63

4 B(1,512), G(1,4800) 26.55 1.82

5 B(1,1024), G(1,2400) 22.48 2.15

4899

(a) (b)

Fig. 3. (a) the apparatus, (b) x-y views of un-deformed (top) and deformed
(bottom) images

3.20 GHz Intel Core i5 650 processor with 4GB RAM. The

composition of the GPU and CPU execution times are given

in Table II. Step 1, which involves 4 trilinear interpolations,

exploits the hardware built-in 3D texture trilinear interpo-

lation. Step 2 involves very large sparse matrix operations,

with the conjugate gradient method taking 70 ms of this

step. CUSPARSE library has been used in Step 2 and 3 for

sparse matrix operations. Linear shape function (2) has been

implemented in Step 4. SSD is computed in Step 5 and “GPU

others” refers to memory transfers and other miscellaneous

computations.

B. Quantitative Study and Quality of Registration

The 3D preoperative image in Fig. 4(top left) and the 3D

intraoperative image in Fig. 4(top right) are the inputs of the

registration algorithm. Fig. 4(bottom left) and Fig. 4(bottom

right) are the outputs of GPU and CPU-based implementa-

tions, respectively. The SSD between the intraoperative and

the deformed preoperative data are 285.11 and 282.08 for the

GPU and CPU implementations, respectively. These numbers

are normalized by the image size. The small difference

between the GPU and CPU results is due to the double-

precision floating point operations in CPU implementation

versus the single-floating point operations in the GPU im-

plementation. Some features such as linear filtering are only

supported in single-precision floating operations on GPU.

V. CONCLUSIONS AND FUTURE WORK

We have proposed and implemented a new FEM-based

3D deformable registration algorithm. The proposed method

TABLE II

EXECUTION TIMES

Steps GPU (ms)/itr CPU (ms)/itr Speed Up

1 2.21 892 403.61

2 120 2797 23.3

3 12.7 1828 143.93

4 0.11 4 36.36

5 0.65 1 1.53

GPU others 10.54 – –

Total 146.21 5522 37.76

Fig. 4. Visual comparison of GPU and CPU registration. 2D (y − z

view) slices of the preoperative (template) image (top left), intraoperative
(reference) image (top right), deformed preoperative image after registration
on GPU (bottom left) and deformed preoperative image after registration on
CPU (bottom right). Note that the phantom has been compressed along x-
axis which has caused image elongation in y−z plane and also movements
of image features in the image plane.

handles large deformations and is based on voxel inten-

sities; therefore feature extraction or image segmentation

are not required in our approach. A GPU-based parallel

implementation of the algorithm yielded 37-fold speedup

over an optimized CPU implementation for 3D MR-to-MR

image registration. Future work will involve single and multi-

GPU implementations of the new algorithms for 3D to 2D

registration of single and multi-modality medical images.

REFERENCES

[1] Y. Liu, A. Fedorov, R.Kikinis and N. Chrisochoides, “Real-time
non-rigid registration of medical image on a cooperative parallel
architecture,” in proc. IEEE Int. Conf. Bioinformatics and Biomedicine,
USA, 2009, pp. 401-404.

[2] T. Rohlfing and C.R. Maurer, “Nonrigid image registration in
shared-memory multiprocessor environments with application to
brains, breasts and bees,” IEEE Trans. Information Technology in

Biomedicine, 2003, vol. 7, no. 1, pp. 16-25.
[3] V. Saxena, J. Rohrer and L. Gong, “A parallel GPU algorithm for mu-

tual information based 3D nonrigid image registration,” Lecture Notes

in Computer Science, 16th Int. Euro-Par Conf. Parallel Processing,
2010, vol. 6272, pp. 223-234.

[4] M. Sen, Y. Hemaraj, S. Bhattacharyya and R. Shekhar, “Reconfig-
urable image registration on FPGA platforms,” in proc. IEEE Conf.

Biomedical Circuits and Systems, 2006, pp. 154-157.
[5] D. Rueckert and P. Aljabar, “Nonrigid registration of medical images:

theory, methods and applications,” IEEE Signal Processing, 2010, vol.
17, pp. 113-119.

[6] A. Köhn, J. Drexl, F. Ritter, M. Knig and H.O. Peitgen, “GPU acceler-
ated image registration in two and three Dimensions,” Bildverarbeitung

fr die Medizin, 2006, Part 3, pp. 261-265.
[7] B. Marami, S. Sirouspour, D. Capson, “Model-Based deformable

registration of preoperative 3D to intraoperative low-resolution 3D and
2D sequences of MR Images,” accepted for presentation at MICCAI

2011, Toronto, Canada.
[8] K.J. Bathe, Finite Element Procedures, Englewood Cliffs, NJ, Prentice

Hall 1996.
[9] C. Chefd’Hotel, G. Hermosillo, O. Faugeras, “A variational approach

to multi-modal image matching,” IEEE Workshop on Variational and

Level Set, 2001, Canada, pp.21-28.
[10] NVIDIA, CUDA Programming Guide 3.1, 2010.

4900

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

