
  

 

Abstract— The quality of automated real-time critical care 

monitoring is impacted by the degree of signal artifact present 

in clinical data. This is further complicated when different 

clinical rules applied for disease detection require source data 

at different frequencies and different signal quality. This paper 

proposes a novel multidimensional framework based on service 

oriented architecture to support real-time implementation of 

clinical artifact detection in critical care settings. The 

framework is instantiated through a Neonatal Intensive Care 

case study which assesses signal quality of physiological data 

streams prior to detection of late-onset neonatal sepsis. In this 

case study requirements and provisions of artifact and clinical 

event detection are determined for real-time clinical 

implementation, which forms the second important 

contribution of this paper. 

I. INTRODUCTION 

RITICAL Care Units (CCU), such as Intensive Care 

Unit (ICU), Paediatric Intensive Care Unit (PICU), and 

the Neonatal Intensive Care Unit (NICU), provide 

specialized care and therapeutic support through a host of 

life saving services and medical devices. Continuous 

monitoring is used to detect early onset indicators of various 

pathophysiologies. Different disease conditions, called 

"clinical events", are detected by analyzing one or more data 

streams with different acquisition frequencies, lengths  and 

signal quality. For example, some heart rate variability 

(HRV) analysis approaches require a continuous wave type 

electrocardiogram signal (ECG) acquired at 500-1000 Hz. 

Other clinical events such as apnoea can be assessed using 

oxygen saturation and breathing rates acquired once every 

second. Although clinical data streams and their associated 

patterns are known to be generated by underlying patient 

physiology; it is also an established fact that these data can 

be corrupted by artifacts [1]-[3]. There are numerous 

potential sources that introduce artifact at the time of data 

acquisition including poor skin contact, loose electrodes, 

muscle activity, power line interference, interference from 

an electrosurgical unit, and optical crosstalk. 

Artifacts in data segments are a source of multiple 

problems. They can be mistaken for a true representation of 

patient physiology, in which case subsequent data analysis  
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may lead to false results and misinterpretation of the 

patient’s state. This exposes the patient to risks of incorrect 

diagnosis, iatrogenic disease and unnecessary therapy or 

surgery [4]. Some signal artifacts are known to exhibit 

behaviors that mimic organ malfunction which can lead to 

severe diagnostic errors [5]. Artifacts increase false alarm 

rates in patient monitors [6]-[10]. Overall, artifacts 

compromise quality of service at point of care.  

Several research groups have developed techniques for 

artifact detection (AD) to improve reliability of stream 

analysis [3], [6], [11]-[15]. However, literature surveyed by 

the authors reveals that few algorithms have found their way 

into actual clinical use. This is partly due to the lack of a 

systematic architecture for self-describing, discovering, 

integrating and implementing these algorithms into clinically 

useful workflows. While these techniques have been 

compared in terms of performance, reliability, robustness 

and shortcomings, this vast body of literature has not been 

synthesized to abstract system requirements and provisions 

for real-time clinical implementation. Requirements define 

the data necessary at the input of a detection algorithm and 

provisions define the deliverables at its output.  

Identification of requirements and provisions is the first step 

towards real-time implementation of these techniques in 

clinical environments. This would also contribute towards 

generalization of the technique for reuse in different clinical 

settings, for assessing quality of different data streams in the 

process of detecting different diseases. 

Neonatal Intensive Care Units provide specialized tertiary 

level medical care to pre-term and critically ill term babies. 

Multiple data sources routinely generate patient information 

in an NICU. Current research is exposing pathophysiological 

behaviors that are candidate condition onset predictors for 

clinically significant events such as late-onset neonatal 

sepsis (LONS). Therefore, there exists great potential in 

meaningful integration of neonatal data from multiple 

sources for automated analysis in real-time. A framework 

that can detect pathophysiological behaviors in real-time 

patient data can provide clinicians with timely clinical 

decision support [16]. Artemis is one such analytical system 

deployed in real-time NICU settings [17]. However, real-

time artifact detection is required to assess signal quality 

prior to stream analysis for  clinical event detection (CED) 

[16], [17]. This research develops a novel multidimensional 

service oriented architecture (SOA) to support real-time 

clinical implementation of AD. It contributes to the larger 

Artemis system by expanding its existing functionality as 

detailed in section III-B. 

SOA has emerged as a successful solution in many real-
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world applications. and it holds the potential to facilitate 

growing demands of automation in healthcare [18], [19]. 

While the use of SOA in healthcare is constantly expanding, 

its application in critical care remains an area that requires 

further investigation [20]. Clinical applications focused on 

patient and clinician needs require delivery of high quality, 

reliable and integrated data at point of care. SOA can offer 

packaged solutions in clinical data analysis applications 

requiring stringent data quality in critical care settings such 

as the ICU and Operating Rooms (OR) [18]. The varying 

needs of a range of CED modules to interface with multiple 

AD techniques that best suit their requirements of data use 

and data quality is a problem well suited to the SOA 

paradigm. 

  This paper presents a novel application of an SOA to 

support real-time integration of AD algorithms in clinically 

applied workflows. AD and CED algorithms published in 

literature form the business logic that comprises the services 

within this SOA. The objective of the AD framework is to 

assess signal quality for a range of clinical event detection 

needs. This paper demonstrates instantiation of the SOA by 

documenting requirements and provisions of AD and CED 

services in a LONS case study.   

II. METHODS AND CONCEPTS 

In this paper, we have employed service oriented 

architecture as the methodology in developing a component-

based system. The fundamental building unit of an SOA is 

the service, which is a modular component encapsulating the 

business logic or the knowledge base in the distinct context 

of the application domain [21]. A SOA enables multiple 

services to access each other using clearly defined protocols 

called interfaces. A component can have multiple interfaces, 

which can be selectively instantiated at run-time. Three basic 

types of interfaces are: 1) requirement, 2) provision and 3) 

configuration [22]. The requirement type interface specifies 

what the component requires for fulfilling its functional 

purposes. The provision type interface defines what the 

component can provide either for another component to 

function or as a contribution to the system output. The 

configuration type interface incorporates user-defined 

functionality. It allows the user to set the component 

parameters for running a particular application. These 

interfaces are standardized for use across the SOA with the 

goal of fulfilling requirements of data acquisition, storage 

and dissemination. Standardized interfaces allow different 

services to communicate in the same language regardless of 

their underlying business logic. An SOA can be developed 

based on the following set of standards: eXtensible Markup 

Language (XML), Web Services Description Language 

(WSDL), and Universal Description, Discovery, and 

Integration (UDDI) [19].  

III. RESULTS 

A. Service oriented architecture 

The artifact detection SOA design is shown in Fig. 1. It 

consists of a pool of CED services and another pool of AD 

services. Each CED service consists of one algorithm to 

detect one or more diseases or clinical events. Similarly, 

each AD service consists of one algorithm to detect artifacts 

in one or more physiological data streams. This research 

presents a multidimensional framework which, in the context 

of this research, means that the framework can include 

multiple CED services using data from multiple streams 

from multiple patients. Moreover, each CED service can 

select one or more AD services to pre-process its required 

data streams. The selection in real-time depends on 

requirements of the CED and provisions of the AD as well 

as the availability of data streams and their estimated signal 

quality. Requirements and provisions of multiple AD and 

CED services can be defined in a common reference 

interface, such that any service within the framework can be 

advertised and discovered through this interface.  As shown 

in Fig. 1, both CED and AD services advertise themselves, 

i.e., publish their descriptions and access information in a 

private UDDI framework within this SOA. One way of 

storing this information is using WSDL , which is used to 

generate XML documents defining the requirements and 

provisions of each service. It is proposed that these 

descriptions be made part of a common reference interface. 

Fig. 1 shows step wise discovery and integration of the 

two services. A user, in this case a clinician, accesses the 

framework through a computer. The configuration interface 

allows the clinician to set operational parameters such as 

available data streams, their frequencies, and requirements 

of signal quality. The CED service sends these operational 

requirements to the service broker through its requirement 

interface in step 1. The broker searches the UDDI in step 2 

for an appropriate AD service whose provisions interface 

matches the requirements of the CED service. Once a 

suitable AD service is found from the pool of AD services in 

the UDDI registry, the broker connects the CED service to 

the appropriate AD service in step 3. In step 4, the AD 

service provides its service description written in WSDL to 

the requesting CED. The CED service would parse the 

XML-based WSDL document in step 5 and accepts service 

provisions of the AD in step 6. This step is the confirmation 

of the connection between the services, also known as 

service composition. It is followed by framework 

instantiation in step 7 where data starts to flow for patients 

Fig. 1. SOA for artifact detection. All communication and data 

transfer is in XML. 
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for whom the CED is configured to operate. In step 7 both 

services commence XML-based two-way messaging and 

data transfer through their interfaces. Various  

communication protocols such as Simple Object Access 

Protocol (SOAP) and Representational State Transfer 

(REST) can be employed to enable this data exchange.  

B. Case Study 

This SOA is being developed for integration with the 

Artemis data analytics system. The Artemis framework is 

currently deployed with the ability to capture neonatal 

patient data in real-time [17]. An SOA approach to capture 

physiological data from patient monitors within Artemis was 

described in [23], where physiological data streams are made 

available through the Physiological Log service. These data 

streams can be channeled to individual and independent 

invoking CED and AD services. Services are composed 

prior to run-time, after which bidirectional data exchange 

takes place between these services through their interfaces. 

In general, CED services for different diseases will have 

different needs in terms of data types, length, frequency and 

quality.  The contribution of this research is the definition of 

the requirements and provisions interfaces of the invoking 

AD and CED services in the context of a late-onset neonatal 

sepsis (LONS) case study.  These definitions describe the 

required data stream attributes as well as the outputs 

provided by these services at run time as depicted by Fig. 2. 

This case study is the first step towards identification of 

requirements and provisions interfaces of individual 

services. In future work this approach shall be expanded to  

fully develop a common reference interface for this SOA. 

 LONS is one of the clinical events under research in 

Artemis. The incidence of LONS in NICUs worldwide 

varies between 11% and 53% [24], resulting in an average 

neonatal death rate of 45% [25]. Research has shown that 

reduced baseline and variability in heart rate can serve as a 

predictor of LONS [26].  In this case study, we propose a 

CED service called LONS - HRV, where the algorithm 

calculates a number of HRV metrics over 5 minutes of ECG 

data.  Downward trends in these metrics observed over 24 

hours act as LONS prognosis tools. This service requires a 

certain quality of the ECG signal at its input. In case the 

quality of the ECG signal deteriorates LONS-HRV is 

capable of analyzing the pulse plethysmograph (PPG) to 

extract the pulse rate (PR) and can evaluate HRV metrics 

based on it. In this framework, the LONS-HRV service 

would invoke an AD service to assess the quality of the ECG 

acquired from the patient monitor. We have found the 

ADAPIT algorithm published by Yu et al. to be quite 

suitable as an AD service for this case study [3]. Its 

advantages include modularity, independence from data 

collection hardware and ease of modification in case one 

source of waveform data becomes unavailable.  

The ADAPIT service inputs four data streams, two of 

which are continuous wave (CW) types, i.e., the ECG and 

PPG (ECG-CW and PPG-CW), and two are parametric, 

i.e., heart and pulse rates (HR, PR). ADAPIT is a data 

fusion algorithm which avails the redundancy in these 

signals; it also has motion artifact filtering capabilities. At its 

output it provides a QI ranging from MinNumValue = 0 to 

MaxNumValue = 3 for every 7 seconds of continuous wave 

data. Signal quality requirements for LONS - HRV can be 

user set. For example, no more than 35% of the 5 minute 

window of analysed ECG data can have a quality index (QI) 

of less than 3. Table I states requirements of LONS-HRV 

service in terms of stream type, frequencies and quality. The 

QI is a signal quality requirement of LONS-HRV and a 

provision of ADAPIT service. ECG-CW and PPG-CW are 

data type requirements of LONS-HRV and provisions of the 

Physiological Log services. Fig. 2 is a graphical 

representation of the AD and CED requirements and 

provisions interfaces identified for runtime in this case 

study. We have added a new variable at the provisions 

interface of ADAPIT, called AnalyzeSignal. It specifies 

which stream should be analysed with the given QI values 

and available streams, these have been derived using 

ADAPIT QI determination rules [3]. It may take up any one 

of the string values shown in Table I fourth column. If the 

accumulated QI for the 5 minutes data segment is lower than 

the user set requirement (e.g., QI = 3) then the provision 

output of LONS-HRV is a low signal quality flag (LSQF), 

otherwise it will evaluate HRV metrics. MessageFrequency 
is stream frequency that is required by LONS-HRV to 

operate and is a provision of the Physiological Log service. 

This requirement can be user set depending on the output 

frequency of the patient monitor and granularity of analysis.  

XML documentation for data exchange between these two 

services through their interfaces is shown in Fig. 3. An AD-

Packet with a PacketFrequency of once every 7 secs is sent 

from ADAPIT provisions interface to LONS-HRV 

requirements interface. It consists of two AD-Data data 

types. These are QI and AnalyzeSignal as shown in Table I 

and described above. The ADAPIT algorithm has been 

validated with a PPG-CW frequency of 91 Hz [3]. In the 

TABLE I 

REQUIREMENTS OF LONS-HRV SERVICE 

QI Available signal AnalyzeSignal 

Message 

Frequency 

(Hz) 

 
ECG-

CW 

PPG-

CW 
 

 

3 Yes Yes ECG-CW 500  

2 Yes No/Yes ECG-CW 500 

1 No/Yes Yes PPG-CW 91 

0 No/Yes No/Yes None 0 

 

 
Fig. 2: Framework instantiation in the LONS case study 
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NICU, it is usual to acquire ECG-CW at a 

MessageFrequency of 500 Hz, hence there will be 500 data 

values sent to these services each second by the 

Physiological Log service.  

To the best of the authors' knowledge, this SOA approach 

to build an AD framework is unique. Patient monitors 

comprise of simple hardware and software linear filters to 

reduce the impact of artifacts by pre-processing individual 

data streams [1]. However, no  approach has been previously 

described in the literature for post-processing multiple data 

streams with the objective of dynamic integration of multiple 

AD and CED algorithms or services in real-time.    

IV. CONCLUSIONS AND FUTURE WORK 

This paper has presented novel SOA based integration of 

artifact and clinical event detection  in real-time critical care 

monitoring. Framework instantiation is demonstrated by 

means of a late-onset neonatal sepsis case study.  

This research forms part of the larger Artemis project 

where we are proposing a new platform for real-time multi-

dimensional patient monitoring leading to early clinical 

event detection and prognosis. Through future research, a 

common reference model shall be developed for AD 

interfaces to support real-time clinical implementation of 

multiple algorithms to detect artifacts in multiple 

physiological data streams. The framework  shall be 

integrated with Artemis and instantiated using real-time data 

to simultaneously detect multiple diseases in critical care 

settings, including apnoea and intraventricular haemorrhage 

in neonatal populations. 

The multidimensional framework proposed in this 

research shall enable dynamic discovery of optimal service 

composition which can lead to improved accuracy and 

reliability in clinical event detection as opposed to isolated 

use of static AD and CED algorithms found in literature.  
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<AD-Packet> 

<PacketFrequency>0.143</PacketFrequency 

<PatientID> NICUBED01</PatientID> 

<DeviceID1>0099</DeviceID1>  <!-- ECG and HR acquisition device--> 

<DeviceID2>0079</DeviceID2>  <!-- PPG and PR acquisition device--> 

<SendTime>11:13:42</SendTime> 

<AD-Data> 

<MessageID>QI</MessageID> 

<MinNumValue>0</MinNumValue> 

<MaxNumValue>3</MaxNumValue> 

<NumValue>3</NumValue> 

</AD-Data> 

<AD-Data> 

<MessageID>AnalyzeSignal </MessageID> 

<StringValue>ECG-CW</StringValue> 

</AD-Data> 

</AD-Packet> 

 

Fig. 3. XML document for data exchange between ADAPIT 

provisions and LONS-HRV requirements interfaces. 
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