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Abstract— New sensors for real-time continuous glucose mon-
itoring (CGM) and pumps for continuous subcutaneous insulin
infusion (CSII), possibly mounted on the same device, opened
new scenarios for Type-1 diabetes treatment. However, possible
failures of either CGM or CSII can expose diabetic patients
to risks that can be dangerous especially overnight. In this
contribution we present a proof-of-concept method, developed
in a state-space context and implemented through a Kalman
estimator, to detect in real time possible overnight failures of
the sensor-pump system by simultaneously using CGM and
CSII data. The method is tested on two simulated and one
real subject. Results show that the method is able to correctly
generate alerts for sensor-pump failures and stimulates further
investigation on its development.

I. INTRODUCTION

D IABETES is a disease which causes abnormal glycemic
values due to the inability of the pancreas to produce

insulin (Type-1 diabetes) or to the inefficiency of insulin
secretion and action (Type-2 diabetes). Patients affected
by diabetes need to monitor their glycemic level during
all day in order to control it and take countermeasures
to keep it inside the normal range of 70-180 mg/dL as
much as possible. Especially in Type-1 patients, diabetes
management is normally based exogenous insulin infusions,
whose scheduling and dosages are tuned on the basis of 3-
4 finger-stick glucose measurements per day. Recently, new
technologies have been developed in order to improve and
facilitate diabetes therapy: sensors for Continuous Glucose
Monitoring (CGM), minimally invasive devices which return
real-time glucose measures every 1-5 minutes for up to 7
days [1]; pumps for continuous subcutaneous insulin infu-
sion (CSII) which allow a more effective and physiological
delivery of insulin [2]. Moreover, it has been demonstrated
that their simple combination in an single device, the so-
called sensor-augmented pump, allows a further reduction of
time spent in hypoglycemia and hyperglycemia [3].

The availability of CGM sensors and CSII pumps gave
new stimulus to the development of the so-called artificial
pancreas, a system based on a closed-loop control algorithm
that, receiving in input the glycemic value measured by CGM
and other individual parameters, is able to infuse via CSII
pump the optimal insulin dosage in order to keep glycemia
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Fig. 1. Data collected during night-time (23h00m-07h00m) in a repre-
sentative subject: CGM signal (blue line), insulin injected (blue bars), and
reference YSI plasma glucose (red stars). Two unrealistic sudden falls on
CGM profile are visible around time 01h30m and 06h20m.

in the normal range [4]. In such a system, a prompt detection
of possible failures in either the CGM sensor or CSII pump
is crucial for safety. Failures during day-time are less critical
because the patient is awake and can promptly fix them. More
dangerous is the night-time scenario, in which the patient
is asleep and cannot take a timely countermeasure. Fig. 1
shows CGM (blue line) and injected insulin (blue bars) data
in a representative Type-1 diabetic patient during night-time
(23h00m-07h00m) in one of the experiments documented in
[5]. As one can note, two unrealistic sudden falls on the
CGM profile are visible around time 01h30m and 06h20m,
which can be classified as spurious when one looks at the
reference plasma glucose (red stars) measured in parallel.

The aim of this work is to investigate if it is possible to
detect overnight failures as those of Fig. 1 by resorting to a
state-space model of CGM and CSII data suitably identified
and used in predictor-form via a Kalman estimator.

II. METHODS

A. The failure-detection method

The failure-detection method (FDM) consists of four main
steps:

1) Identification of a model, personalized on the patient,
which describes the relationship between glucose level
measured by CGM and insulin injected by the CSII
pump;
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Fig. 2. Structure of the Kalman estimator. Plant denotes the system
modeled using N4SID in step 1) of the algorithm, while the Kalman filter
is created in step 2) on the base of the Plant model. Input u is the insulin
injected by the pump, w and v are white noises, y is the glucose level
measured by the CGM sensor, outputs ŷ and x̂ are the 1-step ahead predicted
glucose level and predicted state-vector, respectively.

2) Derivation of a model-based Kalman filter estimator
to obtain a real-time prediction of the future glucose
level together with its variance;

3) Comparison between the glucose prediction and the
next CGM sample;

4) Generation of a failure alert if the CGM sample is far
from the predicted value.

Step 1). We resort to a discrete state-space model in the
innovation form

x(t+ Ts) = Ax(t) +Bu(t) +Ke(t) (1)
y(t) = Cx(t) +Du(t) + e(t) (2)

in which x(t) ∈ Rn is the state vector at discrete time
t, u(t) ∈ R is the insulin injected by the pump at time
t, e(t) ∈ R is the innovation, a white noise of variance
Var[e] estimated form the data, and y(t) is the glucose level
measured by the CGM sensor at time t. Our implementation
in Matlabr(Version R2010a, The MathWorks, Inc, Natick,
MA) employed the N4SID approach (n4sid function of the
System Identification Toolbox), a numerical algorithm for
subspace state identification, see [6] for details.

Step 2). From the so-identified model, we derive a
discrete-time Kalman predictor, see Fig. 2. The Kalman filter
inputs are CGM y(t) and insulin u(t), and the output is the 1-
step head prediction of CGM ŷ(t|t−Ts). Since N4SID gives
a model in innovation form, the Kalman filter prediction
can be obtained simply computing at each time instant the
innovation

e(t) = y(t)− ŷ(t|t− Ts)

and plugging e(t) in (1):

x̂(t+ Ts|t) = Ax̂(t|t− Ts) +Bu(t) +Ke(t)

ŷ(t|t− Ts) = Cx̂(t|t− Ts) +Du(t)

Step 3). The prediction of the Kalman filter ŷ(t|t−Ts) is
compared with the next glucose level measured by the CGM
sensor, i.e. y(t). The comparison consists in evaluating if
y(t) overcomes the confidence interval given by (ŷ(t|t −
Ts)− kSD, ŷ(t|t−Ts)+ kSD), where SD is the standard

deviation of the estimated value and k a suitable positive
integer. Once again, since the identified model is innovation
form [7], SD is simply the square root of the innovation
variance,

SD =
√

Var[e]

and Var[e] is estimated by N4SID form the data.
Step 4). For failure alert generation, in this preliminary

implementation, every time y(t) overcomes the confidence
interval (ŷ(t|t− Ts)− kSD, ŷ(t|t− Ts) + kSD), a failure
alert is generated.

B. The database

1) Real Subject: one dataset has been extracted from
a larger database which consists of several open-loop and
closed-loop experimental trails [5]. The specific dataset con-
sists of two blocks of data of about 20-hour length, collected
on the same patient, the first is relative to the open-loop ex-
periment (i.e. with standard insulin therapy), and the second
is relative to the closed-loop one. Each block is composed by:
a CGM time series, measured with the FreeStyle Navigator
(Abbott Diabates Care, Alameda, CA), with one sample
every 10 min; information about insulin infusion, delivered
through the Omnipod system (Insulet Corp, Bedford, MA);
and frequently sampled blood glucose (BG) values drawn
by using YSI instrument (YSI Incorporated, Yellow Spring,
OH). Because each set of data has been collected on different
time grids, each time series has been first interpolated by
resorting to a Bayesian smoothing procedure [8], and then re-
sampled in a 10-min evenly spaced grid. It has been shown in
[9] that the coupling between injected insulin and meal intake
in traditional open-loop therapy strongly affects the quality of
the identified model. In view of this, model identification will
be performed on closed-loop part of the dataset, which has
significantly less coupled inputs, while FDM will be tested
on the open-loop part of the dataset.

2) Simulated Subjects: the real subject data allowed us
to construct two in silico subjects. Starting from reference
plasma glucose (YSI data), we generated a simulated fault-
less CGM time series. On this time series simulated faults
were introduced at specified times in order to challenge FDM
to detect all and only the simulated faults. The generation of a
faultless CGM time series from YSI data is possible because
YSI values have been frequently sampled (in the original
grid, one sample every 30 minutes). Since YSI is measured
in plasma, while CGM is measured in the interstitial fluid,
we first obtained interstitial glucose (IG) data from BG by
convolving YSI measures with a single-exponential function
h(t) = g

τ e
−t
τ which is usually exploited to describe the

plasma-to-interstitial fluid kinetics [10]. In the specific, we
set g = 1 and τ = 15 minutes. Finally, in order to simulate
CGM data, which are a noisy version of IG, a zero-mean
white Gaussian noise with variance σ2 = 2 mg2/dL2 has
been added to IG profile. These values are representative
and similar to other used literature [11].

In the first simulated scenario (Simulation 1), an unreliable
fall, similar to ones observed on the representative patient of

4948



−1 0 1 2 3 4 5 6
60

70

80

90

100

110

120

130

140

150

160
G

lu
co

se
 [m

g/
dL

]
Simulated scenario #1

 

 

(a)
CGM

Failure

−1 0 1 2 3 4 5 6
0

2

4

In
su

lin
 [U

I]

YSI
Sim CGM
Insulin

−1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Time [h]

(b)

−1 0 1 2 3 4 5 6
60

70

80

90

100

110

120

130

140

150

160

G
lu

co
se

 [m
g/

dL
]

Simulated scenario #2

 

 

(c)
PUMP
Failure

−1 0 1 2 3 4 5 6
0

2

4

In
su

lin
 [U

I]

YSI
Sim CGM
Insulin

−1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Time [h]

(d)

Fig. 3. Simulated data. (a) CGM failure scenario (location of CGM failure is evidenced in yellow): CGM signal (blue line), injected insulin (blue bars),
and reference plasma glucose (red stars). (c) Pump failure scenario (location of pump failure is evidenced in yellow): CGM data (blue line), injected insulin
(blue bars), and reference plasma glucose (red stars) are shown. (b) and (d) Failure alerts generated by FDM (red arrows).

Fig. 1, has been added to the CGM time series. This CGM
failure consists in a spurious decrease in CGM data of 15
mg/dL in the time window 05h00m-05h30m.

In the second simulate scenario (Simulation 2), an insulin
pump failure has been introduced. The original night basal
insulin infusion from 00h50m to 01h50m, which has been
delivered to the patient, has been increased to 1 for 7 consec-
utive samples. This replacement has the aim of simulating
a condition in which the quantity that has been delivered is
different from the one stored and visualized by the pump
device. Fig. 3 depicts both the simulated scenarios. Panels
(a) and (c) show the simulated CGM (blue line) and insulin
infusion (blue bars) data. YSI data (red stars), not used by
FDM, are also reported to evidence the real behavior of
glucose concentration. Simulated failures are highlighted by
the yellow boxes.

III. RESULTS

A. FDM training

The state-space model has been identified on the training
set, using overnight insulin data and simulated CGM data.
The choice of not using the original CGM values is due to
the fact that we do not want FDM to learn failures. The
best dimension of the state vector has been set equal to 3.
The number k of SD values which compose the confidence
interval has been set to 3, which is a reasonable compromise
in order to evidence dangerous outliers.

B. Simulated data

Simulation 1 (CGM failure). Panel (b) of Fig. 3, which is
relative to the CGM failure scenario of panel (a), depicts with
red spikes all time instants in which FDM generated a failure
alert. A total of 4 alerts have been given, located at 05h00m,

05h10m, 05h20m, and 05h40m. All of them are exactly in
correspondence of the simulated failure. The first three alerts
are generated as consequence of the rapid decrease of CGM
(beginning of the failure). The last alert, on the other hand, is
due to the rapid increase which characterizes the end of the
failure. This results evidence that FDM is able to correctly
and promptly detect such a kind of event. No false positives
have been generated.

Simulation 2 (pump failure). Panel (d) shows the results
of the application of FDM to the pump failure scenario
on panel(c). FDM generated three failure alerts. The first
is located at time 01h40m, about 40 minutes after the
beginning of the failure, and the other two at time 02h40m
and 02h50m. All alerts can be associated to not-detected
changes in CGM behavior. In fact, the rapid increase of
the total amount of insulin injected should have reduced the
glycemic concentration more than what has been measured
by CGM, but this did not happen. Of note is that all three
alerts are delayed with respect of the beginning of the failure.
This is not surprising, in fact the effect of insulin action
on glycemic concentration can be observed only after 40-
50 minutes because of both physiological and technological
delays [4], [12].

C. Real data

Fig. 4 (a) presents the real scenario observed during the
experiment. As in Fig. 3, CGM data (blue line), insulin
infusion (blue bars), and YSI data (red stars) are displayed.
Analyzing the data, no problems have been detected in the
insulin pattern. On the other hand, the CGM profile presents
a sequence of oscillations (00h40m-01h40m) and a loss of
sensitivity (04h50m-05h30m) that are not present on YSI
measures. These two events can be considered as failures.
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Fig. 4. Real data. (a) CGM signal (blue line), injected insulin (blue bars),
and reference plasma glucose (red stars). (b) Failure alerts generated by
FDM (red arrows).

The results of the application of FDM are displayed in
panel (b). Six failure alerts have been generated. Four are in
correspondence of the sequence of oscillations on CGM data,
while the other two have been generated at the beginning
(04h50m) and at the end (05h30m) of the second episode.
No false positives have been generated.

IV. CONCLUSIONS

CGM sensors and CSII pumps are new technologies that
can significantly improve therapy and quality of life in
diabetic patients. However, as any electronic system, they are
not free form failures. In this work, we presented a method
to detect in real time some of the possible failures of the
sensor-pump system during the night period on the base of
CGM and CSII data. Results obtained on two simulations
demonstrated that such a system is able to satisfactory detect
both CGM and pump failures. Results on the real dataset
confirmed those on simulation. Although the present work
is largely still out a proof-of-concept, from the preliminary
analysis made, sensor failures seem more easily detectable
than pump failures. This can be explained by the fact that
the gain of FDM has been tuned to catch short-term errors in
the CGM-pump system. Since changes in the insulin basal
pattern during the night can be observed on CGM only after
some time, as well as the effect of long-term failures in CGM
such as drifts, a proper tuning of the gain of FDM together
with a longer prediction horizon appear to be required to
track such events.

Further works will concern: method assessment on a
larger simulated dataset, for instance by resorting to the
UVa/Padova Type-1 Diabetic Simulator [13], which will
allow to reproduce more harmful scenarios, especially con-
cerning pump failures (e.g. simulating basal insulin infusions

greater than the ones visualized to the user); the use of
longer prediction horizons, to track long-term failures; and
the evaluation under different input combinations. From the
methodological point of view, other identification techniques,
which can take into account feedback, will also be consid-
ered.
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