
  

  

Abstract — Movement analysis is a powerful tool for the 

diagnosis of neurological conditions, as well as patient 

assessment and follow-up during rehabilitation programs. In 

spite of the available systems allowing a quantitative analysis of 

a subject’s movement control performances, the clinical 

assessment and diagnostic approach still relies mostly on non-

quantitative exams, such as clinical scales. Further, studying 

balance control, gait and activities of daily living poses relevant 

technical challenges, which greatly limit the availability of 

testing facilities. The goal of our project was therefore to 

develop a new system based on wearable sensors for movement 

analysis and scoring of performances. A prototype 3-sensors 

system was tested on a group of 4 normal subjects while 

carrying out a set of full body movement exercises drawn by 

clinical scales for the assessment of movement and balance 

control. 

I. INTRODUCTION 

HE assessment of motor and balance control is key to 

the diagnosis of cerebellar pathologies such as ataxias, 

the evaluation of the recovery of post-stroke patients 

and of patients affected by peripheral and central vestibular 

pathologies. While there are many approaches to quantitative 

movement analysis, ranging from simple force platforms 

providing center of pressure (COP) data, to motion capture 

systems providing detailed limb movement information, 

clinical assessment is most often based on clinical scales that 

do not involve quantitative measurements. These have the 

advantage of challenging the patient in performing daily 

living activities, while laboratory testing approaches often 

ask for unnatural exercises which end up assessing indirectly 

the patient abilities to carry out the tasks that are commonly 

faced in everyday life. On the other hand, though, the scoring 

is a somewhat subjective procedure in which the expert eye 

of the clinician evaluates the performance of the patient. 

Motion capturing tools could also be used to quantitatively 

analyze patients’ performance in carrying out the exercises 

foreseen in clinical scales, yet they are generally too 

expensive to be deployed systematically in clinical or 

rehabilitation centers. When a rehabilitation expert examines 

a patient carrying out exercises involving different motor 

tasks, the therapist is asked to assign a score to every task, 

choosing among a limited number of values (e.g., 0-3). 

Medicine tolerates this approximation, while engineers 

prefer answering the following question: what does a 

physical therapist focus on, while looking at a patient during 
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balance assessment? Some of the most commonly used 

evaluation tests require to notice peculiarities such as 

completeness of the action, number of incomplete tries 

before success, duration of a task, presence of perturbations 

or reactive events. 

Hence, we set out to design a simple and low-cost system for 

recording, identifying and measuring the most relevant 

features that an expert eye gathers in scoring the 

performance of patients. Experts don’t actually have a formal 

standardized method to quantify when exactly a perceived 

motor perturbation occurs and what is its magnitude. 

Therefore, our study was developed in order to automatically 

recognize movement tasks and quantify a significant part of 

the features that an expert eye could pay attention for while 

examining the performance of a patient in carrying out such 

exercises. 

II. MATERIALS AND METHODS 

A. Experimental Setup 

With these objectives in mind we chose to record the 

performance of a group of four normal subjects (3 male, 1 

female, 25-40 y.o.) while carrying out an exercise that was 

built by piecing together movement tasks selected among 

those included in the most common balance assessment tests 

(e.g. Tinetti test [1], Berg Balance Scale [2], BESTest [3]). 

This approach led us to exercises that considered the 

following seven steady postural states: standing, sitting, 

placing the right foot on a stool, bending forward, bending 

backward, lifting the right arm, picking up a pen from 

ground. In the following, such postures will be called states. 

Each exercise was made of three repetitions of every item 

movement, arranged in a predefined random order, for a total 

of 18 items per trial. The whole set of items was interleaved 

by 19 transitions through the upright stance state (i.e. a 

standing subject asked to sit and step on a stool implies 

stand-to-sit, pause in sitting state, sit-to-stand, pause in 

upright stance, step on a stool). Every subject was asked to 

perform the whole exercise 8 times: twice at a normal pace, 

twice faster, twice on foam, twice faster on foam. In the 

”faster” condition the subject was asked to change posture 

faster and thus remain in the desired state for a shorter time. 

All the trials were repeated while standing on a foam support 

surface in order to create more challenging balance tasks. 

The resulting overall database of actions available for 

analysis would have comprised therefore comprises at least 

(4 subjects, 8 trials, 36 transitions) 1152 events. 

During the recordings subjects stood on a force platform 

(Balance Board BB, Nintendo) while wearing a set of three 
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tri-axial accelerometers (ADXL330) placed on the right 

thigh, chest and right forearm. Accelerometers were 

connected to a data acquisition card with wires (length: 2 m) 

and the data stream from the BB was ensured by a Bluetooth  

connection to the same PC. Limb accelerations and feet 

ground pressure signals were sampled at 120 and 60 Hz, 

respectively. A custom-software was designed for 

simultaneous acquisition and synchronization of the acquired 

data, which were then saved in text files. Additionally, every 

experiment was video-recorded using a commercial webcam, 

thus providing a reference to determine the type of activity 

being carried out at all times.  

B. Data Analysis 

Sensors’ data were processed offline as synchronized time 

series and the overall processing consisted in two 

complementary stages. The first was a preliminary sensor 

calibration and filtering, which was followed by parallel 

incremental algorithms for the extraction of complex 

information on body motion. The second phase 

incrementally processed the data stream in an attempt to 

simulate real time conditions. Accelerometers were 

calibrated, prior to being worn, by aligning them with and 

against gravity, so that their signals could be further 

normalized with respect to 1 g (9.81 ms
-2

). Raw data were 

low-pass filtered at 8 Hz in order to eliminate accelerations 

not related to human motion. Gravitational components on 

sensors axes were then extracted through 0.4 Hz zero-phase 

low-pass filtering (4
th 

order Butterworth [6]) and used to 

reconstruct the instantaneous 3D orientation of each 

sensorized limb, with respect to verticality. Lower frequency 

content was used to compute rotation matrices, which were 

specific to the limb where each sensor was placed.  

Any kind of signal integration was unreliable due to the 

resulting drift, so that the orientation with respect to 

verticality (e.g. pitch θ and roll φ angles) were obtained 

based on individual data samples. The elements of the 

rotation matrix for each limb depended exclusively on the 

instantaneous projection of gravity on the axes of each 

accelerometer. Given that sensor position on the specific 

body part was fixed and known, the overall limb inclination 

could be computed as mediolateral (ML, roll) and antero-

posterior (AP, pitch). Pitch and roll angular displacements of 

limbs with respect to a reference body configuration (upright 

stance, arms down along sides) were the arccosine of gravity 

as projected on sensor axes. It is well known that this 

processing leaves the rotations in the horizontal plane (e.g. 

yaw) undetermined unless recurring to different 

technological and computational tools, such as 

magnetometers or gyroscopes. Initial reference values were 

taken into account and saved as offsets and every subject was 

asked to start the trial from the reference position, so that the 

offset calibration routine could record the initial inclinations 

of accelerometers as placed on the clothing. Though this was 

a procedure worth being repeated every time the accidental 

displacement of a sensor was suspected (detachment, elastic 

bands slip), we never replied it during the recordings. It is 

important to note that the reference positioning of the sensors 

needs to be approximately known for the system to be 

independent from inter-trial and inter-subject variation of 

sensor placement. Finally, full-band [0-8 Hz] content of 

signals was used to compute the signal magnitude vector 

(SVM) [6] while the lower frequency [0-0.4 Hz] content was 

processed to get the Euclidean norm Γ of time derivatives of 

both angular displacements (angular velocities,              

||dθ/dt dφ/dt|| ) as candidate measures of  the subject’s 

activity. These figures were considered as approximate 

measures of the power associated to any limb-specific 

motion. 

C. Events detection 

In order to design a system able to discriminate subject’s rest 

and non-rest periods, SVM and Γ were run in combination of 

a heuristic threshold (set to 0.03 g) and a mode filter 

(running on a 50 samples-wide window). These two were 

then compared as candidate indicators of subject’s activity 

and Γ was adopted as the flag variable. This choice was 

motivated both by the lower noise level and the more 

intuitive biomechanical meaning of such measure. Thus, the 

onset (or trigger) of limb movements corresponded to the 

time when Γ exceeded the heuristic threshold of 0.03 g. The 

rubustness of the approach was further increased by 

automatically discarding consecutive triggers if occurring at 

times closer than 150 ms that is the resulting resolution of 

the system. A “movement” was thus identified as non-rest 

time interval, that is included between two consecutive over- 

and under-threshold triggers. 

Based on such processing, a wider scope algorithm was 

devoted to identify events from a whole-body point of view 

by grouping quasi-concomitant limb movements as those 

having onset times closer than 1.5 s (Fig.1). As a 

consequence the expected number of detected events was 

supposed to be always lower than those of individual limb 

movements . 

Resting postures were then characterized based on θ and φ, 

whose representative values were obtained by averaging 

their values on a 50 ms-wide interval during rest states. This 

choice structured the system on sets of 6 values                   

(2 values/sensor, 3 worn sensors), which provide a 

description of the body configuration during resting 

intervals. The resulting 6-dimensional space was then used 

Fig. 1.  Graphical representation of automatic identification of motion 

events, interleaved by states of rest (stars). Γ quantifies limb activity. 

Reference onset time corresponds to that of the most intense limb-

specific movement trigger. 
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for classifying posture states with a template-based 

procedure. 

D. Events classification 

The experimental session was followed by an automatic 

analysis of subjects’ motion, aimed at simulating the online 

recognition of elementary actions and states. As previously 

detailed, every time series was automatically segmented into 

motor events and rest periods. Events were described by 

their onset time, the limbs involved, the duration of limb-

specific movement and the mean angular velocity associated 

with every movement (TAB.1).  

Rest states were described by a 6-D vector of limb spatial 

inclinations: an intuitive format allowing to easily identify 

one of the postures that subjects were asked to reproduce 

experimentally. To verify whether the chosen representation 

of body configuration had logical correspondence with the 

predefined classes (the 7 posture items), the events dataset 

was first clustered in a subject-specific fashion using the 

clusterdata Matlab function bound to a maximum of 7 

clusters with non-weighted euclidean distance function and 

centroid computed as the average of cluster elements. A set 

of template representative features for each of the predefined 

classes. A template, i.e. the centroid of each cluster, was then 

considered for every cluster and used to classify all of the 

resting states in the subjects’ database. Every event between 

a pair of adjacent resting states was univocally labelled as 

“state (i-1) to state (i)” transition. State “to-different-state” 

events were considered proper transitions, while an event 

resulting in no state change was named perturbation: a 

spurious state transition. 

III. RESULTS 

A. Events detection 

On average subjects changed their posture every 3.5s 

[3.38-3.78] during slow trials and every 2.5s [2.36-2.78] 

during faster ones. The average execution time of an 18-

items exercise showed a reduction of 30% from normal to 

fast, as a proof of effective accelerated pace of subjects’ 

movement. 

Since each of the seven (6 + standing) posture items was 

repeated 3 times per complete recorded trial, the number of 

expected periods of rest was 18. All of the transitory stand-

up states, corresponding to natural pauses between posture 

shifts, were thus expected to be 19. The average number of 

detected events was 20% higher than what expected (44±2 

events, when 37 were expected), but every cluster always 

had at least 3 examples (i.e., the number of required 

repetitions). Thus the overall sensitivity was 100%. 

B. Unsupervised clustering 

The aim of unsupervised learning of executed trials was 

both to investigate the existence of natural clusters of resting 

states, and to further match those states with values that 

represented average configuration of limbs. The clustering 

test carried out on the normal pace time series – 

characterised by natural (slow) execution of actions – was 

successful: exactly 7 clusters were identified and all of the 

state transitions were detected. This preliminary 

unsupervised training allowed to build a set of representative 

values (e.g. centroids) for the predefined classes. One time 

series per subject was sufficient to discriminate the essential 

number of natural clusters, which were labelled 

progressively, in accord with the known fixed sequence of 

scheduled posture items.  Before generalization was carried 

out, clusters were analyzed and internal coherence of clusters 

was computed as a relevant figure. On average, the distance 

among clustered elements was from 50 to 400 times smaller 

than the mean distance between two random elements of the 

dataset. The events dataset was then analysed and it was 

found that surplus detections were perturbations (e.g. state-

to-same-state transitions), guilty of apparently breaking 

resting periods into two. 

C. Generalization: classification of motion events 

The subjective posture templates computed on slow trials 

were used to classify all of the detected states of rest. A 

newly detected state was associated to the closest identified 

template among those belonging to the database. 

Decreasing classification accuracy was observed along with 

increasing speed of execution of motor tasks. A not 

significant accuracy decrease corresponded to increasing 

difficulty of the task, as in balancing on foam, even if the 

number of identified perturbations grew significantly. This 

fact agreed with the basilar expectations about the ability to 

highlight perturbed movements. As said before, 

perturbations were connected to movements not resulting in 

posture change. This characteristic was sufficient in order to 

Fig. 2  Pitch and roll angular displacements referred to starting reference 

posture are used to describe limbs configurations. Six different patterns  are 

connected to the posture items involved in the experiment. 

TABLE I  

PROPOSED FORMALISM FOR THE DESCRIPTION OF MOTION EVENTS 

Features Values 

Item Type 
State-to-different-state transition 

or perturbation 

Onset Time Referred to the most intense movement trigger 

Duration Time interval btw 2 following triggers 

[Onset + Duration] 

Limb Involved: leg, trunk, arm. 
Constitutive 

Movements 
Mean Angular Velocity 
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isolate them from the global dataset and analyze them 

separately. What emerged was that a perturbation is 

connoted by significantly shorter mean duration, lower 

number of limbs involved and lower energy expenditure 

(TAB.2). These observations are perfectly consistent with 

general common sense. With this approach the algorithm 

identifies no false positives. 

IV. DISCUSSION 

The preliminary unsupervised training gave robust results, 

meaning that the mathematical framework supports the aim 

of describing a motor task by means of simple functional 

features. The use of a euclidean metric then addressed the 

research of a classifier among the most intuitive ones. A 

template-base classification was selected because of its ease 

of use, the possibility of interpreting centroids in a 

biomechanical sense and visualizing the values they assume 

in a representative context without coordinates 

transformation (e.g. a 3-segments model of human body). 

Leaving the classification results aside, the hard fact is 

that the heuristic formalization and the state-transition 

paradigm we have proposed here, represents a fundamental 

step towards the development of an automated system for 

fine analysis of human motor activities based on wearable 

inertial sensors. Table 1 presents a standardized format for 

an items library, made of states and transitions. These details 

relate to the recognized task, information on time (duration 

of the action and synchronization of limbs), amplitude and 

energy expenditure. The very restricted set of sensors is 

indeed essential and could be enlarged as desired. Here only 

a sample configuration was shown, but simple upgrades 

would consist in supplying the net with magnetometers, 

putting accelerometers on shins or gyroscopes on the top of 

the head. The latter would allow to describe actions 

involving rotations in the horizontal plane (e.g. trunk and 

arms, walking around a chair or rotating the head) as 

required for instance by the Cawthorne-Cooksey exercises 

for vestibular rehabilitation. What matters in the evaluation 

of gait tasks (DGI & TUG) are: detected asymmetry and time 

required to complete the task. We are dealing with those 

aspects and will write about them in our next paper.  

V. CONCLUSIONS 

By combining the most common approaches to problems 

like recognition and discrimination, we proposed a 

standardized approach to motion analysis based on wearable 

sensors signals. We made a fundamental step towards the 

creation of a well-characterized library of motor events, 

which will be useful for the automated study of movement in 

terms of performance assessment, adaptation and learning. 

The system is limb-oriented and its modular structure allows 

to implement automatic activity classification and enrich 

movement description with a plenty of functional details. As 

we have shown, the approach proposed in our work is 

particularly efficient in identifying the differences between 

an intentional movement and a perturbation. It also provides 

meaningful descriptive features of postural states and 

movement, which we foresee as being useful for the scoring 

of human performance, i.e. in evaluating clinical scales. The 

experimental session was not designed to be exhaustive of all 

possible cases or perturbations, but mainly focused on timing 

and detection, standardized feature extraction and labelling 

of elementary whole-body actions that our subjects were 

asked to perform. The methodology relies on a limited set of 

heuristics which are combined with common activity 

classifiers. It provides a reliable segmentation and 

identification of actions, automatic feature extraction and  a 

fine description of limb movements. With a minimal setting 

and computation we reached a remarkable detail in 

movement description, based on representative variables, in 

a biomechanical sense. Further research will develop 

computational methods able to quantify what was treated 

with a qualitative approach and run standardized information 

through artificial intelligence tools. 
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TABLE II 

TYPICAL CHARACTERISTICS OF EVENTS AND PERTURBATIONS 

Motor 

Item 

ONSET 

TIME (S) 

DURATION 

(S) 
Limb-specific Movements 

Right foot 

on stool 
17.25 2.00 

[0 - 2.00]   leg   43.06°/s 

[0.21 - 0.74]   trunk   9.88°/s 

Stand�Sit 39.45 2.39 

[-0.18 - 1.45]   trunk  35.73°/s 

[0 - 2.21]   leg   45.19°/s 

[0.02 - 1.28]   arm   10.11°/s 

Perturbation 61.33 0.49 [0 - 0.49] arm 30.14°/s 

The example shows how a motor event leading to no state transition 

(perturbation) is connoted by shorter duration and lower number of limbs 

involved. 
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