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Abstract— Electrocardiograms and other similar techniques
(e.g. Photoplethysmograph) are very effective tools for the
detection of cardiac abnormalities. Automated analyses of
ECG signals may be used for this purpose, but due to their
complexity—often involving a Neural Network or Principal
Component Analysis—the signal needs to be transmitted to
be analysed on a powerful device. Thus, even if signals are
compressed before being sent, a significant amount of non-
critical information is transmitted, unnecessarily consuming
bandwidth and resulting in delays. This is problematic as lives
may depend on how fast and accurately an ECG signal can be
analysed.

We present here a fast, simple and accurate technique that
works in real time to detect some ECG abnormalities. We
base our analysis on correlations of the time sequence with
a Representative Signal (RS) to detect abnormal behaviour.
We have implemented this scheme on a standard, inexpensive
portable device, so abnormalities may be automatically detected
immediately on the device itself, without the need for transmis-
sion.

I. INTRODUCTION

Cardiovascular disease (CVD) has long been the leading
cause of death in Australia [1], [2]. Until recently, patients
with Coronary Heart Disease (CHD)—a type of CVD—
would present to a hospital to have an electrocardiogram
(ECG) test, which cardiac specialists would use to diagnose
the disease based on their ECG (time sequence) signal. A
typical ECG signal is shown in Fig. 1.

Technological advancements in the field of Body Sensor
Networks (BSN) and mobile telephony now make it
possible to monitor remotely a patient’s ECG signal,
in both time and frequency, and send the data from
the monitoring device to a remote server. Traditionally,
remote server analysis is needed to detect abnormalities
because the complex pre-processing and post-processing
techniques used require processing power and memory
capacity not available on inexpensive mobile devices.
Naturally, this results in all the signal information—both
relevant and irrelevant—being sent to the server for analysis.

Many remote server analysis approaches have been
proposed previously [3]-[8], which include the use of
Wavelet Transforms (WT) [5], Neural Networks (NN) [6],
WT and NN [3], [4], Principal Component Analysis (PCA)
and K-Means Clustering (KMC) with compressed ECG
signals [7] and a sequential combination of FCM — PCA
— NN [8]. All of these techniques require heavy analysis
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Fig. 1. Normal ECG Signal, Zoom in of the Noise

at the server side to detect abnormalities.

Further work in the area of mobile based approaches
[9]-[13], include R-R peak detection on standard mobile
phones [9], R-R based arrhythmia detection [10], heart rate,
R-R interval, R peak amplitude, and normal/abnormal beat
detection [11], a mobile phone-based monitoring system with
PVC detection [12] and a CVD prevention and detection
system known as HeartToGo [13]. The authors describe
the HeartToGo system as an experimental prototype, with
unknown accuracy and performance. The remaining client-
side approaches perform limited analysis and most do not
identify particular arrhythmias.

II. REPRESENTATIVE SIGNALS

The previous section shows that these state of the art
diagnostic techniques are either incomplete or not suitable for
mobile device based approaches. Furthermore, mobile based
diagnostic approaches appear to be limited in comparison to
tele-monitoring approaches.

A. Representative Signal (RS) Construction

We introduce here a technique based on the construction
of a signal representative of a sequence of normal heart
beats. In this way, our analysis does not use all the heart
beats present in the ECG sequence, but only a representative
pattern which carries the essential signal information. We
extract the fundamental signal information by de-noising and
calculating an average signal using a clustering algorithm.
The complete sequence of steps to construct the RS follows':

1) Collect a continuous sequence of 12 normal sinus
rhythm (NSR) heart beats.

I'The set of parameters selected produce the best results.
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2) Remove the baseline drift by applying a 8 level Dis-
crete Wavelet Transform using the Biorthogonal 6.8
wavelet and zeroing out the 8th level approximation
coefficients [14].

3) De-noise the sequence of beats by applying a 3 level
One Dimensional Wavelet de-noising function? using
the Daubechies 2 wavelet. See Fig. 2(a) and 2(b).

4) Split the sequence into individual beats, by detecting
the R-R interval and dividing the interval in half.

5) Superimpose the beats, such that they are aligned at
the R-Peak’.

6) Apply the K Means Clustering (KMC) algorithm to
the superimposed beats, using 250 clusters.

7) Using the cluster centers found in step 5, reconstruct
the signal.

8) De-noise the reconstructed signal by applying a 2
level One Dimensional Wavelet de-noising function?
using the Daubechies 3 wavelet.

The baseline drift removal technique is based on prior
research by R. von Borries et al. [14], though we use the
slightly smoother Biorthogonal 6.8 wavelet instead. For
de-noising, we use the Daubechies 2 and Daubechies 3

wavelets, as they are appropriate for the desired noise being
removed.

Our approach takes advantage of the fact that heart
beat morphology is specific to each patient. That is, two
patients will have a slightly different normal sinus rhythm
morphology, but the morphology remains consistent for
each patient. This coincides with recent research by Sufi
and Khalil, which demonstrates that ECG signals can be
used as biometrics [15]. Moreover, we have found that even
arrhythmia beats seem to be alike for each patient. See Fig. 3.

A graphical illustration of the RS construction steps can
be seen in Fig. 2. The construction technique is applied to a
sequence of 12 heart beats classified as normal sinus rhythm
for that patient by a medical professional. See Fig. 1.

B. Detecting Abnormalities

After calculation, the RS is re-sampled to match the
sampling rate of the ECG recording. In our case, the
MIT-BIH database, sampled at 360Hz. The RS is then
stored as a sequence of digital points.

To detect abnormalities, the RS is superimposed onto the
patient’s beat ensuring that the beats align at their R-Peaks.
To make both signals the same length, the shorter signal to
the left and right of the R-Peak is zero padded. After this, the
signals are both normalised to create an upper-bound whilst
maintaining their relative sizes. The final step is to split the

20One Dimensional Discrete Wavelet de-noising applied using (wdencmp)
function from the MATLAB Wavelet Toolbox, using default values gener-
ated from the (ddencmp) function.

3To detect the R-Peaks, each ECG record is run through a script which
locates the R-Peak using the annotations from each record as a reference.
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signals into windows of 10 samples. Once the beats are ready,
the following calculations are performed per window:

10
ERS&EUB =Y Y;? (1)
i=1
10
ED =Y (Yasi — Yupi)® )
i=1
ERS
R= EUB %
ED
SIC = FRS T EUB @

For each window, the signal energy ERS of the RS
pattern and the signal energy EUB of the unclassified beat
are calculated (Eq. 1). A third energy value ED of the
difference between RS and the unclassified beat is also
calculated (Eq. 2). Equation 3 determines the size of the
energies relative to each other. Finally, the SIG calculation
establishes the sizes of the energies relative to the size of
the signal itself (Eq. 4).

The energy values ERS and EUB have minima of 0 and
maxima of 10, because the beats are normalised between
1 and -1 and the window size is 10. Therefore from Eq. 1

Y Vi <=0 12 = 0.

Similarly ED will have a minimum of 0 and a maximum
of 40 if both signals were flat at 1 and -1 for the duration
of the window.

R ranges from O to +oco which is a result of ERS being
0 or EUB being infinitely small. An R value closer to 0
indicates that EUB is much larger than ERS. A value closer
to 1 indicates that both signals are approximately close
to each other, while a very large value of R—close to
infinity—indicates that ERS is much larger than EUB.

The SIG value determines whether this difference is
significant with respect to the size of the signals (i.e. the
size of the difference relative to the size of the signals). We
have concluded experimentally that a SIG value of 0.1 or
higher, as in this case, means that the difference between RS
and the unclassified beat, relative to their mass distribution
is significant for our purposes.

Based on these values, together with the window divisions,
we can determine the size, shape and location of significant
differences between the RS pattern and unclassified beat.

C. Classification

We have applied our technique to 21 patients from
the MIT-BIH Arrhythmia Database, who have Premature
Ventricular Contraction’s (PVC). The requirement for each
patient selected is to have at least one PVC beat, at least
12 normal consecutive beats and for the majority of the
patients beats to have a morphology similar to that of a

normal sinus rhythm beat. See Fig. 1.

Our rule-based classifier for PVC detection, consists of:

1) Only check the window if it is on or past the R-Peak
and before the 4th quarter. Essentially this rules forces
the classifier to concentrate on the 3rd quarter region
when the total number of windows is divided into 4.

2) Abnormality Rule 1

a) The R-Peak for the unclassified beat will be sig-
nificantly larger R < 0.5 or significantly smaller
R > 6 in the window containing the R-Peak.

b) The ED must be less than ERS or EUB. This
makes sure that both R-Peaks are on the same
side of the X axis.

3) Abnormality Rule 2

a) The window will have a negative mean value
for the unclassified beat. This ensures that the
classifier detects abnormalities below the X axis.

b) ED is less than EUB and R is less than 0.5. The
rule is checking that the RS is also below the
X axis and that EUB is significantly larger than
ERS.

OR

c) ED is larger than ERS and ED is larger than
EUB. This accounts for the instances where the
unclassified beat is below the X axis but RS is
above the X axis.

d) EUB > 0.7 and SIG > 0.4. With this rule, the
classifier detects instances where the unclassified
beat dips down deeply.

e) EUB > 0.32 and SIG > 0.1. With this rule,
the classifier detects PVC instances where the
unclassified beat has a shallow but wider dip.

The rules 2, 3d and 3e have a weighting of 1, 3 and 1
respectively. The classifier uses these weightings to identify
two distinct types of PVC. The first is a deep ventricular
contraction which lasts for the duration of 1-2 windows.
The second is the shallow and wider ventricular contraction.

A final judgement is made based on the collective
weightings for the abnormal windows. A weighting of at
least 3 is required with two or more consecutive windows
showing indications of PVC to classify a beat as PVC, or
a single window with a deep PVC indication is also adequate.

The thresholds in these rules have been derived from our
optimisation cycle, where each threshold is incremented and
then the results compared using a heat map to determine the
improvement in accuracy. The optimum threshold is selected
once no further improvements in accuracy can be identified*.

4The thresholds have been manually revised since the initial optimisation
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TABLE I
PVC CLASSIFICATION RESULTS

Patient ;E#Seats E;:;C Se Sp PPV NPV
100 2271 1 100.00 99.96 50.00 | 100.00
105 2570 41 68.29 94.74 17.39 99.46
106 2025 520 88.46 | 100.00 | 100.00 96.17
114 1877 43 100.00 98.36 58.90 | 100.00
116 2410 109 99.08 99.83 96.43 99.96
119 1985 444 100.00 | 100.00 | 100.00 | 100.00
121 1861 1 100.00 99.19 6.25 | 100.00
123 1516 3 100.00 99.93 75.00 | 100.00
200 2599 825 97.70 98.65 97.11 98.93
201 1998 198 99.49 97.56 81.74 99.94
202 2134 19 94.74 98.77 40.91 99.95
205 2654 71 98.59 | 100.00 | 100.00 99.96
208 2953 992 98.89 92.71 87.28 99.40
209 3003 1 100.00 99.80 14.29 | 100.00
213 3249 220 78.18 98.81 82.69 98.42
215 3361 164 97.56 99.06 84.21 99.87
223 2603 473 90.27 99.48 97.49 97.88
228 2051 362 99.72 98.28 92.56 99.94
230 2254 1 100.00 99.69 12.50 | 100.00
233 3077 830 99.28 99.33 98.21 99.73
234 2751 3 66.67 99.89 40.00 99.96
Avg 51202 5321 96.00 98.78 90.15 99.53

D. Data Analysis

The statistical measures used to evaluate the accuracy of
our approach are:

e Se (Sensitivity): The Se value is a measure of the
likelihood of PVC beats being detected as PVC beats.

e Sp (Specificity): Sp is a measure of the likelihood that
a normal beat will be detected as normal.

e PPV (Positive Predictive Value): PPV is a measure of
the likelihood that a beat detected as PVC is actually a PVC.

e NPV (Negative Predictive Value): Measures the likeli-
hood of a beat not classified as PVC actually not being PVC.

E. Results

From Table I, we can see a high Se and Sp rate, close
to 100% for the vast majority of patients. High Se and Sp
show that the classifier correctly classifies PVC beats as
PVC and healthy beats as healthy with very good accuracy.

Although the average PPV result (90.15%) can be
considered very good, the PPV measure varies greatly,
ranging from 6.25% to 100%, where the classifier
incorrectly classifies healthy beats as PVC beats. These PPV
values are further exaggerated by the effects of prevalence.

Prevalence is the ratio of sick patients to the total number
of patients. In our dataset the number of mis-classifications
is exacerbated by low PVC prevalence values. As expected,
the prevalence ratio is low as the general population will
not all have a particular arrhythmia. In our case, some
patients—such as patients 100, 121 and 209—have a low
ratio of PVC. As discussed by Altman and Bland [16],
when the prevalence ratio is low, the PPV values will not be

close to one (100%), even if the Se and Sp values are close
to one (100%). This is so because only a small number of
false positives are needed to overtake the number of PVC
cases for some patients. For this reason the PPV values are
not as high as the Se and Sp values.

The NPV values for each patient are also considerably
close to 100%, showing that the majority of the beats
classified as normal we true normals.

The low PPV and high NPV values indicate a high
number of false positives and a low number of false
negatives respectively. False positive errors occur when a
beat is classified as PVC when it was really normal. This
type of error occurs frequently which is the reason why the
PPV values are low; a significant number of beats are being
classified as PVC when they are normal. In a life or death
situation, this would not be a big problem when compared
to false negative errors.

False negative errors occur when a PVC beat is classified
as normal. This can be a fatal mistake. We can see from
the very high NPV values that the classifier is very good at
classifying normal beats, and that it is unlikely that a PVC
beat will be classified as normal.

F. Efficiency

To measure performance the technique was implemented
in Java and timed on a HTC Dream mobile device running
the Android operating system, using embedded timestamps
in the classification code. On average, the technique requires
18.71ms to perform all the required calculations based on
an average of 30.10 windows per beat.

According to Jones [17], the normal sinus rhythm rate is
between 60-100 beats per minute, resulting in a duration
of approximately 600-1000ms. Therefore the time taken
to classify each beat with our approach is much less than
the 600ms limit, making this approach and implementation
perfectly suitable for real-time monitoring’.

IIT. COMPARISON WITH EXISTING TECHNIQUES

Table II provides an in principle comparison of the existing
techniques discussed above with our approach. From the
table, we can see that our approach has higher accuracy than
[6] (bearing in mind [6] classifies multiple arrhythmias) and
is comparable to the majority of other approaches. However,
most approaches do not use the same dataset, hence these re-
sults are not general across all datasets. As for performance,
the majority of the mobile based approaches do not perform
arrhythmia diagnoses, nor they provide performance results.
In addition, the heterogeneity of the mobile devices used
would make direct comparisons very difficult.

SThe timing was performed with pre-loaded recordings from the MIT-
BIH Arrhythmia Database. An additional penalty may be incurred from
any delay between the ECG leads and the mobile device.

6Se and PPV values recalculated from data provided in literature to suit
our interpretation of TP,TN,FP,FN.
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ACCURACY AND PERFORMANCE OF EXISTING TECHNIQUES

TABLE I

Approach SeAccTra;};V Performance
Ebrahimzadeh et al. [3] 95.40 N/A
Shyu et al. [4]° 98.95 | 69.03 N/A
Ranjith et al. [5] 87.50 | 93.30 N/A
Barro et al. [6] 82.41 84.22 N/A
Ibaida et al. [7] 100.00 N/A
Ceylan et al. [8] 99.00 N/A
Sufi et al. [9] N/A N/A <= 8ms
Fensli et al. [10] 99.20 ?
Chung et al. [11] ? ? ?
Chen et al. [12] 93.29 | 9441 ?

Jin et al. [13] ? ? ?
RT WTRS 96.00 | 89.71 18.71 ms

switch representative signals when an increase in
heart-rate is detected, partially adapting to the pa-
tient’s changing state.

— The second alternative is to frequently re-generate
the representative signal in real-time, as discussed
in the point above, thereby fully adapting to the
patient’s changing state.

Finally, this technique is also being tailored to other heart
conditions, such as ST segment deviation.

[1]

? = Data not provided in literature

IV. DISCUSSION AND FUTURE WORK

We have introduced and implemented in Java—making
it portable—a new approach for the classification of ECG
signals. The technique is fast and has very good accuracy,
so it is suitable for real-time use on standard, inexpensive
mobile devices. Our real-time analysis removes the need for
transmission to a remote location, reducing network traffic
and making possible the raising of the alarm immediately
in the presence of an abnormal episode.

Further work with this technique is currently progressing:

o Periodic re-generation of the Representative Signal:
In its current form, the technique requires manual re-
generation of the representative signal with a 24 hour
period. Thus, the technique is to be used in a 24 hour
holter monitoring scenario. Further work will allow the
automatic re-creation of a representative signal on the
device itself using a subset of the patient’s recorded
ECG. One approach is to re-create the representative
signal by identifying a normal sinus rhythm beat in
real-time in which there is a very high correlation, and
then replace the representative signal with this new beat.
Another approach is to reduce the complexity of the
representative signal creation algorithm to be executable
on the device.

o Adaptation to patient state: Currently, as discussed
above, the technique requires manual representative
signal re-generation on a periodic basis, in the order of
24 hours. The ECG signals used for our experimentation
where recorded with the patient in a resting state, so the
RS is only suitable for when the patient is in a resting
state. Thus, when the patient moves from a resting state
into a stressed state—e.g. an exercise workout, climbing
stairs—the representative signal cannot adapt in real-
time, which may cause a increase in false positives until
the patient moves back into a resting state. There are
two possibilities to solve such a problem:

— Create a second representative signal with the pa-
tient in a stressed state. Thus, the technique could

[2]

[4]

[5]

[6]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]
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