
  

   

Abstract—Pattern recognition, and in particular dynamic 

time warping has been applied to the ECG for many different 

purposes over the last decade. Significant research on creating 

adaptive, feature based, and more complex forms of the 

algorithm in order to increase its ability to classify an ECG 

signal accurately has been performed. Despite this increase in 

complexity and in the number of variations of the dynamic time 

warping algorithm there has been less focus on actually using 

the results of dynamic time warping to relate the reference and 

test signals to each other as accurately as possible. The majority 

of dynamic time warping algorithms published in the literature, 

even the most complex of them, classify the most accurate match 

to a reference signal based only on resulting Euclidean distance 

or slope difference between samples of the known reference and 

unknown query signal. This article demonstrates how a 

combination of measurements including heart-rate, amplitude 

and required warping time alignment can be used to reduce the 

resulting error in the classification of a query signal after the 

query and reference signals have been warped together. Its 

benefits are verified with significant testing.  

I. INTRODUCTION 

CG pattern recognition has been at the forefront of 

cardiac research for a number of years. Although it has 

many applications, the fundamental objective in each 

application remains the same i.e. to identify characteristics 

within an ECG frame. One method of pattern recognition, 

originally emerging from the domain of speech analysis, is 

dynamic time warping (DTW) [1]. Because the method 

originates from an area of signal processing focusing on non-

stationary signals obtained from non-linear systems it is no 

surprise that it has been applied to the ECG signal. The 

DTW process can take two signals of different frame length 

and duration and align them using a non-linear dynamic 

process. A single recursive measure of Euclidean distance or  

other difference measurements can be used to warp the 

signals in time so as to reduce the difference between them.  

 Different forms of dynamic time warping can be loosely 

grouped into three types; derivative, value and feature based 

dynamic time warping. Each has its own strengths and 

weaknesses associated with it and they have been combined 

to see the algorithm applied to ECG frame segmentation [2], 

classification [3] and even biometric identification [4]. The 
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DTW algorithm aligns the two signals in time to reduce the 

difference between the two signals be it on a value, 

derivative or feature-based premise.  

 The process of establishing which reference signal the test 

signal or query is most similar to is known as classification. 

There are a number of methods used to classify the query 

signal. Many authors [2] and [5] use a multilayered approach 

whereby when warping the signals the ECG component 

reference identified as the closest match is the one which 

provides the minimum slope differences between 

approximation splines during warping. Others such as [3] use 

the residual difference between the query and reference to 

perform the classification of the signals post-DTW. Although 

these methods of classification are popular, they have the 

limitation of being dependent on just one feature of the query 

and reference signals i.e. the amplitude or approximation 

spline slope differences between reference and query. 

 To overcome this limitation some users [4] have combined 

other analysis techniques with DTW such as Fisher’s Linear 

Discriminant Analysis to further increase the accuracy of the 

classification process.  

 In this article it shall be shown how using a classifier that 

takes into account the query and reference signal heart rates, 

the amount of time alignment required around the fiducial 

points of the ECG signal and the resulting residual amplitude 

difference between the query and reference signals can aid in 

the classification process. The classification is not 

significantly complex, as all of the features used are in the 

time domain and hence, is not computationally intensive. 

II. BACKGROUND 

A. Dynamic Time Warping 

 The type of dynamic time warping used for this exercise is 

a value based algorithm, most similar to that used by Huang 

et al [3], although the classifier can be used with results from 

other methods of DTW. Value based DTW calculates the 

minimum Euclidean distance between each specific sample 

in the query and every sample in the reference signal.  

Using the input signals two matrices of the same size are 

created, S1 an m x n matrix which contains the reference 

signal repeated on each row and S2 an m x n matrix which 

contains the query signal repeated in each column. A 

Euclidean distance matrix D can be calculated using single 

dimension Euclidean distance as given by equation (1): 
 

                      
2D(x,y) = [S1(x,y) - S2(x,y)]                      (1) 

 

where 1 ≤ x ≤ m and 1 ≤ y ≤ n. 
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Using the distance matrix D, a cumulative distance or C 

matrix can be created that measures the minimum cost of 

matching each sample in the reference and query signals. 

The cost matrix C is created by starting at location (1,1) in 

the matrix D and calculating the cumulative distance of the 

first column and row of the matrix D storing the results in the 

corresponding location of the new matrix C (therefore an m x 

n matrix). The remaining cumulative values to be stored in 

the matrix C are calculated by following the recursive 

equation: 

                

     (2) 

where 1 ≤ x ≤ m and 1 ≤ y ≤ a. 

In speech signal synthesis, where the DTW algorithm 

originated from it may not have been necessary to time align 

the two complete frames in their entirety. However, in ECG 

signal analysis one of the constraints usually introduced to 

the DTW process is ensuring the beginning and end of the 

frames are time aligned. This is ensured by starting at the last 

location C(x,y) of the cumulative distance matrix C and 

moving to the lowest “cost” value stored in any one of  the 

adjoining locations. By tracing all the way back to the 

beginning of the matrix C, and recording the path used that 

resulted in the minimum accumulated difference, two new 

time aligned sample sets are created called S1w and S2w. The 

x co-ordinates of the path are used to create S1w and the y co-

ordinates for S2w. If a sample is repeated in order to time 

align the two signals it is referred to as padding. 

B. Heart Rate of the Query and Reference Signals 

 The classifier consists of three time domain features with 

respect to the query and reference signals. Each must be 

expressed as a fraction before being used in the classifier 

equation. The first feature to be included is the relationship 

between the heart rate of the original signal and the reference 

signal. The difference between the heart rate of the current 

query and reference shall be expressed as a fraction of the 

maximum heart rate difference between the current query 

signal and the reference with the least similar heart rate from 

the test database. The heart rate variable X is given by: 

 

                         

HR HR

HR HR

Q -R
X =  

max Q -Rd
                         (3) 

 

Where QHR and RHR are the heart rates of the two signals 

under test, and RdHR is the difference in beats per minute 

between the current query heart rate and least similar 

reference signal heart rate in the reference database. 

C. Time Alignment Required around the Fiducial Points 

 The second feature to be included in the classification 

criteria accounts for the alteration of the test signals time 

scale around the fiducial points during time alignment. A 

fiducial point refers to the onset or termination point of one 

of the constituent P, QRS or T-waves within an ECG signal. 

Since the duration of each constituent wave and hence the 

location of these points is considered diagnostically 

significant [8] and their identification is often the objective 

of applying DTW in the first place, we would like the query 

and reference signal to have been similar to each other in 

these regions before alignment. Of course it is possible that 

the morphologies are similar but require padding to time 

align them (as is the purpose of the DTW algorithm), but 

significant padding would imply that the morphologies of the 

two signals were in fact very different. This variable Y 

accounts for that possibility. It is calculated for each 

constituent wave of the current signals under test and is 

defined as the total padding inserted within ±3 samples of 

the onset and termination of the P, QRS and T-waves of the 

current query and reference signal during DTW, expressed 

as a fraction of the maximum padding inserted during 

warping of the current query to the reference signal in the 

database which required the most time alignment around the 

fiducial points during DTW. 

                       
( )

O T 

RefO RefT

P + P
Y =  

max P + P
                    (4) 

 

 Where PO and PT are the padding or number of samples 

inserted within ±3 samples of the onset and termination of 

the current query and reference signal respectively. PrefO and 

PRefT are the total padding required during time alignment 

between the current query and the reference signal from the 

database that required the maximum amount of time 

alignment around the fiducial points. 

D.  RMS Difference of Query and Reference 

 The purpose of this feature in the classifier is similar to 

the residual or difference measurements used in [2] -   [5]. 

The ‘R’ peaks of the query and reference signals should be 

amplitude normalized to the same value pre-DTW. After 

dynamic time warping has been performed one can measure 

the remaining amplitude difference between the query and 

reference signal and take that as a measure of similarity 

between the two signals. In this case we shall use a root-

mean-square difference (RMS-difference) calculation to 

measure the amplitude difference of the time aligned query 

and reference signals. For each of the constituent waves of 

the signal i.e. the P, QRS and T-waves of the beat under 

analysis a RMS-difference variable Z will be calculated.  

 

                          

                      (5) 

 

 Where Q and R are the query and reference signals 

respectively, k is the onset sample number and n the 

termination sample number of the ECG P, QRS or T-wave 

being processed. The RMS-difference offers an insight into 
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the similarities of the two signals in amplitude terms after 

they have been time aligned. 

E. The Time Domain Classifier Equation 

The classifier uses a root of the sum of the squares for each 

of the features X, Y and Z to rank each of the results 

between the query and the signals in the reference database 

as shown in equation (6): 
 

                                       (6) 
 

 Where CR is the resulting classifier rank, X, Y and Z are 

the feature variables and C1, C2 and C3 are scaling 

coefficients used to weight the contribution of each feature to 

the classifier. A classifier rank is created for the P, QRS and 

T wave of each query to reference comparison and the one 

which yields the minimum ranking is deemed the best match. 

F. The Test Database 

To examine the accuracy of the classifier and 

contribution of each feature a large database of test signals is 

required. The test data were taken from the MIT QT 

Database available for download online [6]. A total of 719 

beats were chosen from the Lead II signals belonging to 

subsets of the Normal Sinus Rhythm and Arrhythmia 

databases. The original data from the QT database had a 

250Hz sampling frequency. Annotations for the records were 

available for the fiducial points of each P, QRS and T-wave. 

G. Measuring the Accuracy of the Process 

 In order to quantify the accuracy of the DTW process and 

the best reference classifier we shall use the location of the 

fiducial points as a metric. The duration of constituent P, 

QRS and T-waves are frequently used in cardio-diagnostics 

so the ability of the process to identify them in a query signal 

is of utmost importance. Each signal from the reference 

database shall be used as a query and warped to the other 

718 reference signals. In doing so, we know the location of 

the fiducial points of the query as annotated by a cardiologist 

in the QT Database and can compare them with the fiducial 

points identified using the best match reference signal 

identified by the classifier after DTW. 

III. OPTIMIZING THE SCALING COEFFICIENTS C1, C2 AND C3 

 In order to find the most accurate combination of scalars 

to weight the contribution of each feature, the coefficients 

C1, C2 and C3 shall be adjusted from 0 to 1 in 0.167 

increments. Starting with C3, C2 and finally C1 all 

combinations of the scaling weight coefficients can be tested.  

 Fig. 1 is a plot of the total root mean square error (RMSE) 

in the identification of the fiducial points in all of the 719 

test signals for each combination of the scaling coefficients. 

 It can be clearly seen that each feature has an effect on the 

accuracy of the classifier. Note how after the 49
th

 

combination, where C1 (X) is increased from 0 to 0.167, 

there is a large reduction in the RMSE because the heart rate 

constraint has been introduced to the classifier. One can also 

see that at every 49
th

 combination from here on the error 

spikes to a peak as C2 (Y), the measurement of padding 

around the fiducial point is removed when C2 returns to zero. 

The final constraint Z, the RMS-difference or residual 

between the query and reference constituent P, QRS and T-

waves is reset to zero every seventh combination as the 

coefficient C3 is returned to zero. By observation of the 

resulting RMSE in Fig. 1, it was found that to achieve 

minimum RMSE (providing minimum error and maximum 

stability) a coefficient combination C1=0.333, C2=0.833 and 

C3=1.0 should be used to scale or weight the contribution of 

each feature to the classifier.  

 This optimum combination of weight coefficients was 

discovered by test on the large reference database used in 

this exercise. If the process was repeated with a larger 

database with a larger variety of morphologies at different 

heart rates we might expect the weights to vary accordingly.  

IV. MEASURING THE ACCURACY OF THE PROCESS 

 The test signals originating from the Normal Sinus 

Rhythm and Arrhythmia Databases are examined separately 

since they offer significantly differing morphologies.  The 

algorithm is tested for its ability to locate fiducial points and 

resulting P, QRS and T-wave durations. Diagnoses of 

various cardiac conditions such as hypokalaemia [8] are 

based on the duration of constituent waves, signifying their 

importance.  Note that 1.5% of the query/reference matches 

were deemed as obvious errors and removed before the 

subsequent analysis shown here. 

A. Finding the Fiducial Points 

 The results in Table 1 are the mean and standard deviation 

of error between the actual location of the fiducial points and 

those identified with DTW. Also included are deviations 

regarded as acceptable by different cardiologist assessors of 

the same points as reported by Jané et al [7] which serve as a 

bench mark for performance of the automatic algorithm.  

 Table 1 demonstrates that the mean errors resulting from 

the algorithm are low, particularly if one considers that with 

a sampling frequency of 250Hz a mean error of 4ms is just 

one sample.  Comparing the standard deviations of error for 

the algorithm with the deviation of expert cardiologist 

opinion one can see that the algorithm deviations are within 

±12ms or ±3 samples. The algorithm deviations are higher 

 
 Fig. 1: Training the feature weight coefficients. 
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for some of the fiducial points. This is because the expert 

deviations are those of experts viewing of the same beats 

while in the case of the algorithm it is matching a different 

annotated reference beat.  

B. Measuring the Duration of the Constituent Waves 

 To further investigate the accuracy of the DTW classifier 

process we investigate how well the duration of the P, QRS 

and T-waves from each signal can be measured.  

 In Fig. 2, the duration of each component as annotated by 

the expert cardiologists for each wave has been averaged 

over 6-bpm intervals. Also shown is the mean ± one standard 

deviation of the durations for each heart rate interval to give 

an idea of the variation in how the experts annotated the 

different waves for the same heart rate interval. We would 

hope the results of the warping process would lie within the 

deviations of the durations as annotated by experts. 

 The results in Fig. 2 prove that the combination of value 

based DTW and our time domain classifier enable a very 

accurate automatic measurement of the duration of each 

constituent waveform for the signals in the database.  

 Similar results for the Normal Sinus Rhythm test signals 

are shown in Fig. 3. Observe how the durations identified 

using the DTW process lie within the annotated variations 

for each constituent waveform in each heart rate interval. 

V. CONCLUSION 

 One of the most commonly used pattern recognition 

methods in ECG analysis is DTW. There are a significant 

number of variations of the DTW algorithm, but many of 

even the most complex variations of the algorithm use a 

single difference measurement to classify the best match 

between an unknown query and a reference signal. 

Alternative methods of classification have been suggested 

that combine DTW with other analysis techniques to further 

increase the accuracy of the process. The authors have 

suggested a classifier that uses a time domain based 

combination of features including heart rate, degree of time 

alignment required and an amplitude difference 

measurement. In doing so the DTW method is still used to 

warp and time align the two signal frames as accurately as 

possible, but the reference providing the best match is 

chosen using a number of features from the query and 

reference signal rather than just a single measurement. 

The increased accuracy due to the addition of each feature 

in the classifier was demonstrated. The contribution of each 

feature to the classifier was optimized to achieve minimum 

error by weighting each feature’s contribution using scalar 

coefficients. The performance of the DTW and classifier 

process was verified by comparison with expert 

identification of diagnostically significant information from 

signals within the reference database.  
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Fig.3: Normal Sinus Constituent Wave Durations as detected by DTW. 

 
Fig.2: Arrhythmia Constituent Wave Durations as detected by DTW. 

Fiducial  
Point 

Expert 
(ms) 

Normal-Sinus 
Rhythm (ms) 

Arrhythmia 
(ms) 

P-Onset ±10.2 -2.05±17.23 -0.64±16.44 
P-Termination ±12.7 2.48±13.30 5.23±17.47 
QRS-Onset ±6.5 0.71±11.20 2.11±18.38 

QRS-Termination ±11.6 1.75±10.83 5.07±14.78 
T-Onset N/A -11.39±29.0 12.1±31.71 

T-Termination ±30.6 6.76±14.87 6.03±27.62 

Table 1: Mean ± standard deviation of the algorithm and classifier 

error compared with expected expert deviation. 
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