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Abstract— Atrial fibrillation (A-fib) is the most common
cardiac arrhythmia. To effectively treat or prevent A-fib,
automatic A-fib detection based on Electrocardiograph (ECG)
monitoring is highly desirable. This paper reviews recently
developed techniques for A-fib detection based on non-episodic
surface ECG monitoring data. A-fib detection methods in the
literature can be mainly classified into three categories: (1)
time domain methods; (2) frequency domain methods; and
(3) non-linear methods. In general the performances of these
methods were evaluated in terms of sensitivity, specificity and
overall detection accuracy on the datasets from the Physionet
repository. Based on our survey, we conclude that no promising
A-fib detection method that performs consistently well across
various scenarios has been proposed yet.

I. INTRODUCTION

Atrial fibrillation (A-fib) is the most common cardiac
arrhythmia. While it is not life threatening in itself, persistent
cases of A-fib may cause palpitations, fainting, chest pain,
or congestive heart failure and even stroke. To effectively
treat or prevent A-fib, automatic A-fib detection based on
Electrocardiograph (ECG) monitoring is highly desirable.
However, accurate detection of A-fib episodes based ECG
signals is technically challenging. A-fib can easily go unno-
ticed as it does not show any severe symptoms, particularly
in paroxysmal cases. In such cases, no obvious signs can be
visually observed from the ECG signal shortly after or before
an episode of A-fib. In this paper, we review recent works
which attempt to address this problem. Most of the works
employ a two-steps procedure: first extract the features of
interest from the ECG signal; then a classifier is built based
on the extracted features. In literature, the performances of
these methods have been evaluated on the datasets from
Physionet [1], an online repository for cardiac arrhythmia
data. In particular, three data sets are commonly used:
The MIT-BIH Database (AFDB), The Physionet Normal
Sinus Rhythm Database (NSRDB) and Atrial Fibrillation
Prediction Database (AFPDB).

II. TIME DOMAIN FEATURES FROM ECG

In clinical practice, cardiology experts visually inspect
ECG signals to detect any kind of arrhythmia in the heart.
In an automated A-fib detection algorithm, this step is
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Fig. 1. Illustration of time domain parameters. The top figure shows (1)
QR, (2) RR and (3) PR, while the bottom figure shows (4) P amp, (5)
P wide and (6) P ini from the zoomed part of the ECG containing P-wave.

translated into feature extractions from the raw ECG signals.
The commonly-used parameters extracted from the ECG
signals numerically define the P-wave morphology, QRS
morphology and RR dynamics.

A. P-wave morphology

Prolongation of the sinus node recovery time or the in-
crease in the duration of P-wave has been used by physicians
as a sign for abnormal atrial activities that could potentially
lead to an A-fib episode. The RMS voltage of the filtered
P-wave has also been reported as a good feature by many
investigators [2]. Apart from these two, some other P-wave
related parameters have been considered in the literature. The
parameters associated with P-wave morphology are listed
below (see Fig.1):

1) P amp : Amplitude of the P-wave.
2) P int : Area under the P-wave.
3) P wide : Width of the P-wave measured for a particular

heart pulse.
4) P ini : Time distance of the beginning of the P-wave

till its maximum.
5) PR : The distance from one P peak to the following R

peak.
In order to get the these parameters, each beat in the
ECG is identified by detecting the R peaks and a time
window is defined where the P-wave can be localized. If
multiple P-waves occur in the predefined time window, the
average values are computed. In addition, some statistical
measurements of these parameters have also been used. In
[3], [4] minimum, maximum, mean and standard deviation
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Fig. 2. Measurements for QRS morphology.

Fig. 3. Example of RRn and ∆RRn series

of P amp, P int, P wide, P ini and PR were taken as features
for automated A-fib detection.

B. QRS morphology

In medical context, the occurrence of Atrial Premature
Contraction (APC) is associated with A-fib. In the ECG
signal, APC manifests as a beat with abnormal QRS mor-
phology. The parameters used in the literature to study the
QRS morphology are listed below, and shown in Fig.2.

1) QR : Amplitude of the R peak measure from the base
of Q.

2) QRS int : Area under the QRS complex.
3) QRS wide : Total time duration for the QRS complex.

The QRS parameters for each pulse are extracted by de-
tecting the R peaks. The minimum, maximum, mean and
standard deviation of QRS wide were employed in [4] as the
feature for A-fib classification. In [5] QRS int was used to
to detect APC in a given ECG signal. QRS int is calculated
from QR and QRS wide using trapezoidal method.

C. RR dynamics

R peak is the most visible point in an ECG signal and
it is relatively easy to detect. It is considered as the center
of a beat in the ECG, and thus the count of R peaks per
minute is our heart beat rate. In recent years, researchers
have studied its dynamics to identify any arrhythmia even
prior to its onset. Some popular parameters associated with
the RR dynamics are:

1) RRn : Time interval between two consecutive heart
beats.

Fig. 4. Example of Histogram of ∆RRn in seconds

2) ∆RRn : Excess time taken by the present RR interval
from the next RR interval. i.e.

∆RRn = RRn −RRn+1 (1)

3) HRV : Heart rate variability (HRV) is an index that
measures the variation of the RR interval over a
time duration. HRV is quantitatively defined by many
parameters, such as: mean heart rate (HR), standard de-
viation of NN interval (SDNN), coefficient of variation
(CV), the percent of RR intervals above x milliseconds
over a time duration (pNNx), etc. A detailed list of
HRV-related parameters can be found in [6].

4) SDSD : Standard deviation of the time difference in
consecutive RR interval. i.e.

SDSD = SD|n−1
1 ∆RRn (2)

where SD stands for standard deviation.
RR interval can be generated from a manually-annotated

ECG file or automatically through the use of a QRS detector.
In [3], [4], [5] the minimum, maximum, mean and standard
deviation of RR were considered as detection features. In
[7], histogram is plotted for every 0.02 second increment in
|∆RR|. The histogram was divided into four regions, where
the mean |∆RR| value was calculated for each region and
used as features (see Fig.4). In [8], [9], RR time series were
normalized to resulting a 15 second heart rate of 60 beats
per minute (bpm), then SDSD was calculated as metric to
judge the risk factor of occurrence of A-fib.

III. FREQUENCY DOMAIN FEATURES FROM ECG

In some research works, authors have extracted frequency
domain parameters from the raw ECG signals by trans-
forming the time series data into the frequency domain.
Sometimes signals look very similar in time domain, while
they become differentiable in the frequency domain. Listed
below are the commonly-used frequency domain parameters.

1) PSD(ECG) : The power spectral density (PSD) of the
ECG time series. There are methods like Periodogram
estimator, Auto-regression estimator and Lomb esti-
mator to estimate PSD. Periodogram estimator is the
simplest one to implement for uniformly sampled data.
As shown in (3), S(ejω) is the PSD of ECG signal x.

S(ejω) =
1

n
|

n∑
l=1

xle
−jω|2 (3)

2) PSD(RRn) : The PSD of the RR interval time series.
An example is shown in Fig. 5.

4993



Fig. 5. Example of PSD(∆RRn) using periodogram method.

3) FFT(RRn) : Discrete Fourier transform of the RR in-
terval time series using Fast Fourier Transform (FFT).

4) FFT(HRV) : The FFT of the heart rate series. Heart
rate is the reciprocal of the RR interval.

In [4], the PSD of the ECG signal computed through Lomb
and Periodogram methods were used as detection features.
In [5], PSD was computed for the RR(n) interval. The
correlation between high frequency (HF) and low frequency
(LF) was considered as a metric for the first stage of
classification. Following this, a 64-point PSD was computed
and used as input features in the last stage of classification.
In [7], FFT of RRn was computed and the summation of the
absolute value of the coefficients over predefined frequency
bands were taken as input features for the classifier, while
in [9], the ratio of the integral over predefined frequency
bands and the center frequency were taken as features. In
[10], 30-min heart rate (HR) segment was interpolated to
2Hz and FFT coefficients were computed for the band 0.01
- 0.5Hz with a sampling interval of 0.01Hz, which results in
a 49-points feature vector for A-fib detection.

IV. NONLINEAR FEATURES EXTRACTED FROM ECG

Efforts have been made to separate the RR dynamics of
A-fib and non-A-fib cases through the use of two nonlinear
transforms: Poincare Plot [8] and Symbolic Dynamics [11].

1) Poincare Plot : It is a plot between RRn vs. RRn+1.
This plot shows the relationship between two consec-
utive beats. It is intuitive to assume that the plot for
a person with normal sinus rhythm will be close to
a straight line with slope 45◦. Example of a Poincare
plot is shown in Fig.6.

2) Symbolic Dynamics of ∆RRn : The purpose of sym-
bolic dynamics is to study the dynamic behavior in
the time series by abstracting the measurement details.
It transforms the discrete time series to series with
fewer number of symbols. In [11], for example, only 3
symbols A = {1, 2, 3} are used. The mapping function
of the transform is:

Zn(∆RRn) =

 a : ∆RRn < 0
b : ∆RRn = 0
c : ∆RRn > 0

(4)

An example of the transformation output is shown in
Tab. I.

Fig. 6. Example of Poincare plot (RRn vs. RRn+1)

In [7], [8], [9], prior to the RRn vs. RRn+1 plot, the RR
time series are normalized (to get a 15 second heart rate of
60 beats per minute). Then the plotted image was rotated
to −45◦ to facilitate automatic analysis of the plot. Subse-
quently, analysis was performed by computing the density of
the plot on a predefined region. In [11], approximate entropy
(ApEn) was computed for each of the “words” obtained from
the transformation. Classes were formed by grouping the
words with equal approximate entropy, the average number
of words per class was taken as the metric to identify A-fib.

V. DETECTION OR CLASSIFICATION METHODS

After extraction of the important quantitative features
from the ECG signals a classifier was used to learn and
automatically determine whether the features belonging to
A-fib or non-A-fib cases. There exist many classifier in the
literature. In this survey, researchers have employed different
classifiers depending on the features extracted.

A. K-nearest neighbor(KNN)

KNN assigns a sample vector to a class which has the
majority of vectors in the k nearest neighbors in terms of
Euclidean distance. In this classification method, the value
of k is optimized for classification accuracy [4]. In [3],
KNN was implemented with feature reduction for optimal
classification with varying neighborhood k.

B. Bayes Optimal Classifier

In the case of equal priory probability P (Hi), the posterior
probability P (Hi|x) can be computed as the likelihood of x
with respect to class Hi. So the decision rule takes the form
of

x ∈ Hi if P (x|Hi) = max
j
P (x|Hj) (5)

In [4] the aforementioned classifier was used in the specific
feature space.

C. Artificial Neural Network(ANN)

In most cases, a neural network is structured with one
hidden layer, while the number of hidden neurons and
input parameters are optimized for accuracy. Full Error
Back Propagation (FEBP) was commonly used to train the
ANN (such as in [7], [10], [4]). While in [4] Partial Error
Back Propagation (PEBP) and Conjugate Gradient (CG)
algorithms were used to train the network.
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TABLE I
EXAMPLE OF TIME SERIES TO SYMBOLIC SEQUENCE TRANSFORMATION

RRn[ms] 650 673 652 638 627 627 632 622 635 653 639 638 638
∆RRn 23 -21 -14 -11 0 5 -10 13 18 -14 -1 0 *
symbols c a a a b c a c c a a b *
word-1 c a a a b c a
word-2 a a a b c a c
word-3 a a b c a c c
word-4 a b c a c c a
word-5 b c a c c a a

D. Linear Discriminant Analysis (LDA)

LDA partitions the feature space into different classes
using a set of hyperplanes. Unlike Bayesian classifier, LDA
gives a probability estimation yk of each class for any input
feature vector x. Let µk be the mean of the feature vectors
from class k of the given training samples and Σ is common
covariance matrix for the whole training feature vectors.
Thus

yk = −1

2
µT
k Σ−1µk + µT

k Σ−1x+ log(πk) (6)

where πk is the prior probability of vector x being in class
k. LDA was used for A-fib detection in [5], where 64-point
PSD of RR were employed as the input feature.

E. Empirical Detector (ED)

Empirical detector involves the derivation of a single or
multiple parameters to separate two classes via comparisons
with some empirically-found values. This approach is very
promising in terms of reducing computational complexity.
However, it requires substantial prior knowledge about the
classes of data and a selection of good metric for comparison.
In [5], the correlation between HF and LF components of
RR segment was considered as a metric for the first stage
of classification. Subsequently, the area under QRS complex
was employed to detect APC, and this information was used
in the second stage of classification. The use of empirical
detector has also been demonstrated in [8], [9], [11].

VI. DISCUSSION AND CONCLUSION

A. Discussion

The methods that we have surveyed in this paper come
with merits and drawbacks. Some methods tend to employ
too many ECG parameters to characterize A-fib, which
resulted in increased computational complexity. In order
to reduce the computational burden some methods have
attempted using only several important parameters for the
characterization, which resulted the trade-off in the classi-
fication performance. A rough comparison of the detection
performances can be made from Tab. II, which gathers the
published results across the methods (subjects under test are
different in many cases). The results on selected patients or
segments were published in some cases, which is mainly due
to the difficulty in parameter extraction. In addition most of
the works in literature have used the ECG segments only
prior to A-fib episodes, while the segment preceding A-fib
has not been taken into consideration.

TABLE II
COMPARISON OF PER SEGMENT DETECTION ACCURACY PUBLISHED

Ref SE SP Comments
[3] 96.0 88.0 KNN on various time parameters
[4] ’70.0 ’70.0 KNN on time/frequency parameters
[5] 46.5 98.6 ED/LDA on time/frequency
[6] 90.5 94.7 ED on HRV parameters only
[7] 84.6 96.5 ANN on time/frequency/nonlinear
[8] 82.9 96.9 ED on time/nonlinear
[9] 96.3 * ED on frequency

[10] 94.5 96.5 ANN on HRV frequency analysis
[11] n.a. n.a. ED on ApEn of symbolic dynamics

{’xx.x}=overall accuracy calculated combining NSR and A-fib data,
{*}=result not published, {n.a.}= no result for non-episodic data.

B. Conclusion

This study has reviewed the techniques developed in
recent years on the A-fib detection from non-episodic ECG
monitoring data. Considerable progress has been made in A-
fib detection throughout the years. However, no promising
method has been proposed yet. This is mainly due to lack
of precise characterization of ECG signal. Hence searching
for better metrics to characterize the ECG signal for A-fib
detection is a future direction of work.
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