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Abstract— Breast density has been shown to be one of the
most significant risks for developing breast cancer, with women
with dense breasts at four to six times higher risk. The Breast
Imaging Reporting and Data System (BI-RADS) has a four class
classification scheme that describes the different breast densi-
ties. However, there is great inter and intra observer variability
among clinicians in reporting a mammogram’s density class.
This work presents a novel texture classification method and
its application for the development of a completely automated
breast density classification system. The new method repre-
sents the mammogram using textons, which can be thought
of as the building blocks of texture under the operational
definition of Leung and Malik as clustered filter responses.
The new proposed method characterizes the mammographic
appearance of the different density patterns by evaluating the
texton spatial dependence matrix (TDSM) in the breast region’s
corresponding texton map. The TSDM is a texture model that
captures both statistical and structural texture characteristics.
The normalized TSDM matrices are evaluated for mammo-
grams from the different density classes and corresponding
texture models are established. Classification is achieved using
a chi-square distance measure. The fully automated TSDM
breast density classification method is quantitatively evaluated
on mammograms from all density classes from the Oxford
Mammogram Database. The incorporation of texton spatial
dependencies allows for classification accuracy reaching over
82%. The breast density classification accuracy is better using
texton TSDM compared to simple texton histograms.

I. INTRODUCTION
Breast cancer will affect between 1 to 8 women during

their lifetime but the earlier the diagnosis the better the
prognosis for the disease. Mammographic density which
refers to the prevalence of fibroglandular tissue as it appears
on a mammograms has been shown to be one of the most
important risks for developing breast cancer and this has been
confirmed in a number of studies [1], [2], [3]. Additionally,
breast density may lower the sensitivity of mammography
and obscure lesions. Thus, breast density and change thereof
may be used for risk assessment, for reducing screening
intervals, for the development of Computer Aided Detection
(CAD) systems with higher sensitivity and specificity, but
most importantly for signaling the necessity for a more thor-
ough interpretation of certain mammograms for achieving
the earliest possible diagnosis.

The American College of Radiology (ACR) proposes the
following breast density classification in the Breast Imaging
and Reporting Data System [4]:
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Fig. 1. Examples of mammograms from the 4 BI-RADS categories: a)
BI-RADS I, b) BI-RADS II, c)BI-RADS III, d) BI-RADS IV.

• (i) the breast is almost entirely fat,
• (ii) there are scattered fibroglandular densities,
• (iii) the breast is heterogeneously dense which may

lower the sensitivity of mammography, and
• (iv) the breast tissue is extremely dense, which could

obscure a lesion in mammography.

Mammograms corresponding to the four BI-RADS classes
can be seen in Figure 1. BI-RADS density classes I and II

correspond to low density mammograms that translates to
low breast cancer risk cases, whilst BI-RADS III and IV

density classes correspond to high density mammograms and
thus high risk cases. Recently, due to how significant a risk
mammographic density is, clinicians are required to report
to the woman her breast density BI-RADS classification,
so that she can make more informed decisions regarding
her health. Automated breast density classification methods
can also be incorporated in CAD systems to achieve higher
sensitivity and specificity. A number of studies have shown
that CAD’s sensitivity is low for mammograms with density
classification BI-RADS III and IV, and almost half of interval
cancers occur in mammograms classified as BI-RADS IV
[5], [6]. Reporting of breast density suffers from high inter
and intra observer variability [7]. Automated breast density
classification algorithms can overcome this difficulty, aid
the clinicians and provide objective classification of breast
density.
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A number of techniques have been proposed for breast
density pattern classification. Boyd et al. [2] proposed a semi-
automatic computer measure based on interactive threshold-
ing and the percentage of the segmented dense tissue over
the segmented breast area. Miller and Astley [8] investigated
texture-based discrimination between fatty and dense breast
types applying granulometric techniques and Laws texture
masks. Other methods include automatic segmentation based
on variance histogram discriminant analysis classification
[9], and density classification using a large set of statistical
and compositional features in term of BI-RADS [10]. Musta
et al. [11] present an overview of the accuracy of different
breast density classification methods using different features,
and achieve a maximum classification accuracy of 73.3%
through a selection of Haralick and Soh texture features,
genetic search and wrappers. Petroudi et al. [12] proposed
a scheme that uses texture models to capture the mam-
mographic appearance within the breast area: parenchymal
density patterns are modeled as a statistical distribution of
clustered, rotationally invariant filter responses in a low
dimensional space.

The purpose of this paper is the development of a fully
automatic, and highly accurate mammographic breast density
classifier based on objective and quantitative texture mea-
sures. The presented algorithm builds on the same defini-
tion of textons as clustered filter responses [13]. However,
instead of using histograms for modeling the different tex-
ture classes, a texture descriptor that evaluates the spatial
dependence between the textons characterizing the image is
introduced and used. The descriptor follows the definition
of intensity spatial dependency matrices as introduced by
Haralick et al. [14], but is evaluated on texton maps.

II. METHOD

The gray-level spatial dependence or co-occurrence matrix
(GLCM) measures the frequency of intensity pairs in the
gray-level image of neighboring pixels at different distances
and directions [14]. Haralick et al. [14] evaluated second
order statistics on the corresponding GLCM for further
texture description. However, the simple intensity informa-
tion does not provide adequate information especially for
analysis and characterization of many medical images. Thus,
following the definition of GLCM presented in [14], a new
texture descriptor that captures both structural and statistical
texture information is defined, the texton spatial dependence
matrix (TSDM), or texton co-occurrence matrix. The term
texton co-occurrence matrix was first used by Liu et al.

in [15]. However, they define textons as different shape
descriptors. They define a 2x2 grid, and if three or four
of the corresponding pixel values are the same, then those
pixels are set to form a texton. If a pixel belongs to a texton
the pixel will keep the intensity value of the image where
the five texton shapes are evaluated on. The resulting image
is what Liu et al. [15] call a texton map. Thus in [15] the
corresponding texton map for the intensity image is the same
image with the same intensity values, except where the pixels
do not match a texton shape and are set to zero. Li and Shi

follow a similar approach using local binary patterns [16].
For the TSDM texture descriptor presented here, textons are
defined under the operational definition of Leung and Malik
[13], resulting in a very different texton map - where each
texton corresponds to a vector and not to a pixel intensity
value, or a gradient thereof, as in [15].

The TSDM texture descriptor captures both structural and
statistical texture properties. Textons, as proposed by Julesz
[17], are the primitives of texture. Structural models of
texture are based on the view that texture are composed
of primitives in spatial arrangements. The presented method
provides structural characteristics of texture in the sense
that the primitives are explicitly defined [18]. Additionally,
TSDM follows the definition of Haralick [14], and can
be explained as the matrix containing the frequencies or
the probabilities of the textons co-occurrences, and as such
provides statistical information regarding the texture.

Let the image to be analyzed defined as I and let Lx =
{1,2, ...,Nx} and Ly = {1,2, ...,Ny} the spatial domains in X

and Y with Nx number of columns and Ny the number of
rows. Let T I be the texton map matrix where each entry
identifies the texton, T ∈ {t1, t2, ..., tn}, each pixel is mapped
to. There are n textons in the corresponding texton dictionary.
T I can be defined as a function that assigns some texton T

to each pixel: T I : Lx ×Ly → T .
Again as in [14], the developed texture measures are

angular texton nearest-neighbor spatial dependence matrices
(TSDM) specified by the matrix of relative frequencies Pti,t j

with which two neighboring pixels mapped to textons ti and
t j separated by distance d occur on the image’s texton map
T I.

The TSDM for displacement d = (dx,dy) can be repre-
sented by:

T SDM(ti, t j,dx,dy) =

1
�

Nx

∑
k=1

Ny

∑
l=1

1 i f T I(k, l) = ti and T I(k+dx, l +dy) = t j

0 otherwise

(1)

where � defines the total number of elements in the
corresponding set. By incorporating a displacement vector in
the horizontal and vertical direction the angular relationship
between neighboring pixels is inherently incorporated.

For the development of the new TSDM based density
classification model the following steps need to take place.
Initially the texton dictionary must be derived. Following,
segmentation of the breast region [19] the resulting im-
ages from the training set are filtered using the Maximum
Response 8 (MR8) filter bank proposed by Varma and
Zisserman [20]. After filtering using the filter bank, each
pixel is associated with a vector that holds the filter response
corresponding to each filter in the filter bank. The filter
responses over all the pixels in the images’ regions of interest
are aggregated. The texton dictionary is created by clustering
these aggregated filter responses over all images per BI-
RADS class using the K-Means algorithm.
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TABLE I
CLASSIFICATION ACCURACY RESULTS

BI-RADS BI-RADS BI-RADS BI-RADS
Accuracy% I II III IV

4 Density Classes 86% 93% 80% 66%

Given the texton dictionary, each image pixel in the breast
region of each mammogram in the training set is mapped
to the texton closest to it in the filter response space. This
step provides the T I image’s texton map. T I is then used to
evaluate the TSDM for different displacements as shown in
equation (1). TSDM matrices for different displacements are
computed for each training mammograms. The sets of the
TSDMs define the breast parenchymal density models.

To achieve classification, the same steps as above are
followed for a test mammogram - segmentation, filtering,
evaluation of the corresponding T I and TDSMs. The re-
sulting TSDMs are compared to the TSDMs of all learnt
models and the mammogram is assigned to the BI-RADS
class closest to it using χ2 significance test in conjunction
with a nearest neighbor rule. For the developed method 10
cluster centers per BI-RADS class are used for the creation
of the texton dictionary, and for this paper only the TSDM
with d = 1 and d = 2 are investigated.

III. RESULTS

The algorithm is evaluated on a set of 100 mammogram
cases from the Oxford Database [12], 25 from each BI-
RADS class for which there was independent agreement in
density classification by three expert breast radiologists. 10
mammograms from each class were used for training and 15
for testing. The images correspond to 8-bit mammograms
downsampled to 300μm/pixel. Despite the small size of
the training set, exact agreement with the ground truth was
achieved in 81% of the cases.

Table I shows the classification accuracy of the presented
technique discriminating between the 4 BI-RADS categories
based on the ground truth. Accuracy is calculated as the
percentage of correctly classified mammograms in a breast
parenchymal density category over the ground truth total
number of mammograms in that category.

The classification algorithm achieves better accuracy if
only two classes are used for breast density characterization.
If the mammograms with breast density classification BI-
RADS I and BI-RADS II are combined in one class de-
fined as the low risk class whilst the mammograms with
breast density classification BI-RADS III and BI-RADS IV
are combined in another class defined as the high density
class the lowest achieved classification is 90%. The results
are presented in Table II. This result suggests, that breast
parenchymal density and its distribution result in distinctly
different texture characteristics in the lower and higher den-
sity classes. The algorithm provides the worst classification
for BI-RADS IV mammograms and this may be attributed to

a.

b.

c.

d.

Fig. 2. Examples of the TSDM matrices with distance 1 for the
mammograms from the 4 BI-RADS categories shown in Figure 1: a) BI-
RADS I, b) BI-RADS II, c)BI-RADS III, d) BI-RADS IV.

the fact that mammograms from this category tend to have
the parenchymal density more uniformly distributed in the
breast region.

IV. DISCUSSION

This paper proposes a new effective texture descriptor that
captures both structural and statistical properties. The paper
introduces TSDM, which evaluates the relative frequencies
with which neighboring pixels are mapped to textons in the
texton dictionary. Evaluation of different distance TSDM
matrices and calculation of different texture features from
the corresponding matrices will allow for even better texture
characterization and improved performance and consistency.
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TABLE II
CLASSIFICATION ACCURACY RESULTS FOR A TWO CLASS

CHARACTERIZATION OF BREAST DENSITY

BI-RADS BI-RADS
Accuracy% I and II III and IV

Two Risk Classes 93.3% 90%

The images in the BI-RADS I and BI-RADS IV appear as
much more homogeneous than do the other two classes, thus
evaluation of homogeneity should allow for better character-
ization of the two classes. Moreover, BI-RADS II and and
BI-RADS III have textures at different scales which may be
a reason why the algorithm can achieve good classification
accuracy for mammograms from these two categories.

The texture descriptor is incorporated in a method for
breast density classification. The results are very good and
the TSDMs for the different density classes show good
separation between them. Figure 2 shows the TSDM matrices
for the four mammograms corresponding to the four BI-
RADS classes in figure 1.

The algorithm achieves good classification accuracy com-
pared to other methods in the literature. Using simple texton
histograms achieves a classification accuracy of about 76%.
Oliver et al. [21] also achieve comparable classification
accuracy of 76% by using a combination of morphological
and texture features from segmented breast and fatty den-
sity regions. However, the presented algorithm needs to be
evaluated on a much larger dataset

V. CONCLUSION

A breast density classification approach is presented based
on the development of a new texture model TSDM that
captures both structural and statistical texture information
through the use of textons which are texture primitives and
texton co-occurrence which provides frequency information
regarding the distribution of textons at certain distances. The
method builds on the definition of textons in [13] and spatial
and angular dependence matrices in [14]. The presented
method defines texture classes as TSDM matrices over
“texton” dictionaries developed from a training set. Classi-
fication is simply a matter of comparing the texton spatial
dependence relative frequency matrices using an appropriate
distance measure. The results compare favorably to other
methods in the literature [11]. However, further evaluation
using different filter banks for the texton dictionary and
combination of the TSDMs evaluated at different distances
can result in significant improvement.

In the future, TSDMs corresponding to different distances
will be evaluated on a larger dataset. Evaluation of texture
features on TSDMs will also be investigated.
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