
  

Abstract—Automated analysis of retinal images usually 

requires estimating the positions and appearance of blood 

vessels, which contain important features for abnormality 

detection. Although there is a wide literature on detecting 

vessel positions from retinal images by modelling cross-

sectional profiles, little attention has been given to extracting 

vessel appearance in intensity. In this paper, we introduce a 

piecewise Gaussian scaled model to characterise the intensity 

distributions of vessel cross-sections. Based on a newly 

developed vessel detection scheme, we describe the use of the 

proposed model for extracting vessel appearance. The 

preliminary experimental results obtained from angiographic 

pairs and images of an SLO sequence are reported. 

I. INTRODUCTION 

MAGES of the ocular fundus have a wide range of 

applications in clinical practice, including the diagnosis of 

diabetic retinopathy, retinal densitometry, and macular 

pigment measurements [1]. The appearance of blood vessels 

in ocular fundus is a central feature for diagnosis support, 

since it can be used to classify veins and arteries, measure 

diameter changes, and visualise retinal microcirculation [2] 

[3] [4]. For example, retinal vessels can be classified into 

arteries and veins based on their appearance in intensity, and 

the ratio of arteriole and venular vessels in retinal images is 

regarded as an indication of cardiovascular diseases [2]. 

Another example is the appearance of vessels in 

angiographic sequences which varies significantly in retinal 

microcirculation so that a fused image can be generated to 

illustrate circulation at all points in the vascular network. 

This enables identifying retinal vascular occlusions that may 

occur during cardiopulmonary bypass surgery [4]. A precise 

characterisation of vessel appearance in retinal images of 

multiple modalities is therefore of great importance. 

Vessels are objects with a two-sided boundary, while the 

“twin” boundaries of vessel are often assumed to run 

smoothly or parallel to each other. The task of vessel 

detection can be accomplished by convolving images with a 

filter kernel defined by the model of cross-sectional profile 

along the vessel longitude (e.g., Gaussian shaped profile or 

difference-of-dual Gaussians) [5] [6]. There is a wide 

literature on parametric profile models characterising the 

appearance of retinal vessels. It is a natural choice to extract 

the appearance by optimally finding model parameter 

values. 

In practice, a vessel cross-section is often partitioned into 

three segments corresponding to the two boundaries and the 
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central between the boundaries, so as to account for the 

central reflex [7] [8]. Li et al. proposed to model each of 

three segments as part of a Gaussian curve, assuming that 

the intensity background of twin boundaries remains at the 

same level [7]. Their piecewise Gaussian model has been 

shown to be effective in differentiating arteriole and venular 

vessels in colour fundus images based on the brightness of 

vessels.  

Retinal vessels are visible as dark or bright structures 

relative to the background (dark in red-free photographic 

images, bright in many fluorescein angiograms). Since dye 

injections help to highlight the vascular tree, the brightness 

of vessels in an angiographic sequence of SLO (Scanning 

Laser Ophthalmoscope) images increases from low to a 

peak, then decreases to original low values; that is, vessels 

change from dark to bright, then back to dark (see Fig. 1). It 

is therefore difficult to fit a piecewise model to vessel 

segments, especially in SLO sequences. 

 
(a)                   (b) 

 
(c)                   (d) 

Fig. 1.  Cross-section of a bright vessel (a) and its intensity profile (b); the 

cross-section of a dark vessel (c) and its intensity profile (d). The image 

patches (a) and (c) are cropped from two angiographic images respectively. 

  

In the rest of this paper, a piecewise Gaussian scaled 

model is proposed to better characterise the intensity 

distribution crossing vessels. We also discuss how to use the 

model obtained to extract vessel appearance, based on a 

newly developed vessel detection scheme.  

II. METHODOLOGY 

A. Modelling Vessel Profile 

As to the intensity distribution on the cross-section, we 
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make the following remarks: 

• The background intensity on the twin boundary edges 

may be significantly different. 

• Vessels in a sequence may change between dark and 

bright, relative to the background. 

To better describe the intensity distribution of vessel, we 

propose a piecewise Gaussian scaled model: 

      (1) 

which consists of three Gaussian functions, depicting the 

curves of the twin boundaries and the central curve with or 

without the reflex, respectively. As illustrated in Fig. 2, , 

, and  represent the amplitudes of the three curves; , 

, and  are the positions of the peaks of the Gaussian 

functions; , , and  denote width distributions;  

and  are the intensities of retinal background of the twin 

boundaries, and  is the minimum intensity level of the 

central curve. 

 

 
Fig. 2.  Cross-sectional profile of vessel. 

 

B. Vessel Extraction 

We aim to determine the amplitude of Gaussians on each 

piecewise curve. However, it is non-trivial to determine 

these curves on a cross-section. In the following, we discuss 

some properties of Gaussian scaled functions, and describe 

the use of the proposed piecewise Gaussian scaled model for 

vessel extraction. 

1) Properties of Gaussian Scaled Functions: Without loss 

of generality, let us consider that a random vector  can be 

approximated by the product of a zero-mean Gaussian vector 

 and an independent positive scalar random variable : 

      (2) 

where  indicates equality in distribution [9]. Suppose the 

amplitudes of  are corrupted by additive noise: 

     ,  

where  is zero-mean Gaussian noise, and  is the 

observed vector. Without loss of generality, the vector  is 

expressed as: 

      (3) 

where “ ” or “-” is dependent on upward or downward 

signals (i.e., bright or dark object relative to background). As 

an approximation,  and  are assumed to be 

decorrelated. 

Let us recall that the distribution of signals for the 

classical matched filtering is assumed Gaussian. Given the 

values of the multiplier , a matched filter constructed with 

the shape of  can then be used to detect the signals (i.e., 

vector ) with scaled Gaussian. In practice, values of the 

multiplier  are unknown beforehand, and the multiplier is 

sought by solving an optimisation problem. We have an 

initial estimator for the multiplier: 

     , (4) 

where  is the dimensionality of vectors , , , and 

. An estimate of the multiplier is adjusted based on the 

initial estimator (4) until the maximal SNR of the fitting is 

approximated. 

2) Multiscale Analysis for Vessel Detection: The Fourier 

transform of a Gaussian function is constant zero-phase, and 

the phase of a Difference-of-dual-Gaussians switches being 

zero and . Both exhibit scale invariance (i.e., phase 

invariance with respect to scales) in the wavelet domain. 

With this observation, we approach the task of vessel 

detection by assessing Fourier phase alignment. Considering 

that the piecewise Gaussian scaled model in (2) holds scale 

invariance, we extend the idea of phase alignment for vessel 

extraction by implementing a multi-scale analytical scheme. 

First, on the one hand, detection of vessel positions is 

performed by calculating phase alignment with zero or  

(for dark or bright vessels), or with switching zero and  

(for vessels with the central reflex). The positions with high 

alignment coincide with the vessel median area delineating 

the vascular structure. On the other hand, phase alignment 

with  is calculated and the positions with high 

alignment coincide with vessel boundary areas. Details of 

calculating phase alignment can be seen in [8]. 

Consequently, the twin boundary and the central of a cross-

section are determined. 

3) Fitting Model to Data: The merit function that 

measures the agreement between model and data is defined 

as the Euclidean distance, 

      (5) 

where  is the -th sampling point, and  is the 

number of the data points. Best-fit parameters can be 

obtained by minimising the merit function in (5). For this 
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purpose the results reported in this paper were obtained 

using the Marquardt method. 

C. Summary of Algorithm 

The cross-sectional profile of vessels is modelled as the 

product of an independent scalar random variable  and a 

Gaussian shaped function . The scalar variable of the 

model implies the appearance of a vessel cross-section. 

Hence, the values of  extracted from the same cross-

section across an angiographic sequence, reflect the interval 

variation of vessel brightness caused by dye injection. We 

apply the phase alignment function on data from oriented  

2-D log-Gabor wavelets. The computation of phase 

alignment and extraction of cross-sections on 2-D images 

follow the implementation of [8]. Empirically we chose six 

orientations with four resolution levels increasing the 

wavelength by 0.2 octaves. 

The algorithm hence proceedings in the following steps: 

• Calculate phase alignment with zero or  on each 

image producing a map of the vascular structure. 

• Calculate phase alignment to produce a map of 

boundary areas. 

• Extract cross-sections. 

• Perform optimisation to find the value of the 

multiplier on each vessel cross-section. 

 

III. EXPERIMENTAL RESULTS 

A pair of cropped FA images acquired from the same 

subject at different time are given in Figs 3(a) and 3(c), and 

their zero-phase detection results are given in Figs 3(b) and 

3(d) respectively. In the original FA images, the central light 

reflex due to imaging or physiologic conditions of the 

subject is obvious on some vessel segments. Careful 

observation of the original image in Fig. 3(c) shows that a 

few vessel segments are dark relative to the surrounding 

background, while other vessel segments are bright. The 

alignment degrees shown in Figs 3(b) and 3(d) take values 

between 0 and 1. From the results we readily observe that 

high alignment degrees of local Fourier components are 

detected coinciding with the positions of the vasculature 

trees. Observation of the result in Fig. 3(b) also supports that 

high alignment degrees are retained even if the central light 

reflex is present. 

   
(a)                 (b) 

   
(c)                 (d) 

Fig. 3.  FA images (a) and (c) acquired from one subject at different time; 

and their detection results (b) and (d) of zero phase. 

 

A cropped original SLO image is given in Fig. 4(a), and 

the detection result of zero-phase in Fig. 4(b). For the 

purpose of comparison, the classical matched filtering ([5] 

and [10]) was applied to the same image, and the 

corresponding filtered image is given in Fig. 4(c). We notice 

that the classical matched filtering is ineffective, largely 

because the SLO image is fairly noisy. By contrast, the 

result of zero-phase detection delineates the vasculature tree. 

This shows that the method of zero-phase detection is hence 

more noise robust. 
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 (a) 

 (b) 
Fig. 4.  A cropped SLO image (a) and the detection result of zero phase (b). 

The corresponding detection result (c) of the Gaussian matched filtering. 
 

The fitting experiment was performed on the cross-section 

illustrated in Fig. 1(c), across angiographic images of an 

SLO sequence.  The material of this experiment includes 35 

images in time order taken from the frames of the sequence 

which have been registered beforehand. We used the 

Levenberg-Marquardt algorithm to optimise values for the 

model multiplier. These values were recorded and plotted in 

Fig. 5, reflecting the dye filling progress. We can see the 

proposed technique provides an interface to illustrate the dye 

filling progress, i.e., the time to peak. 
 

Fig. 5.  Multiplier at the cross-section as shown in Fig 1(c), calculated from 

SLO sequence. 

IV. DISCUSSION 

We have presented a new vessel extraction technique for 

the understanding of FA pairs and sequences. The novelty of 

this work is that a piecewise Gaussian scaled function for 

modelling the distribution of vessel cross-sections is 

proposed, and the properties of the Gaussian scaled function 

are utilised for extraction. The proposed algorithm technique 

retains the advantage of a newly developed scheme, and has 

following strengths attractive for image sequences: 

• dark and bright vessels with varying appearance can 

be detected; 

• appearance changes can be extracted; 

• noise-robustness; 

• minimal operator intervention partly due to phase 

congruency. 

Presently, we are assessing the proposed algorithm 

technique on more SLO sequences, and expect to refine it 

for cases where both dark and bright vessels are present 

simultaneously in single images. The driving application is 

super-resolution of angiographic images of a SLO sequence 

acquired during retinal circulation. 

REFERENCES 

[1] M. Gunn, "On ophthalmologic evidence of general arterial disease,'' 

Transactions on Ophthalmology Society UK, vol. 18, pp. 365–381, 

1998. 

[2] S.G. Vazquez, N. Barreira, M.G. Penedo, M. Saez, and A. Pose-

Reino, “Using retinex image enhancement to improve the artery/vein 

classification in retinal images,” Lecture Notes in Computer Science, 

vol. 6112, pp. 50-59, 2010. 

[3] C.M. Wilson, K.D. Cocker, M.J. Moseley, C. Paterson, S.T. Clay, 

W.E. Schulenburg, M.D. Mills, and A. Ells, "Computerized analysis 

of retinal vessel width and tortuosity in premature infants,'' 

Investigative Ophthalmology & Visual Science, vol. 49, pp. 3577-

3585, 2008. 

[4] J. Jagoe, J. Arnold, C. Blauth, P. Smith, K. Taylor, and R. Wooton, 

“Retinal vessel circulation patterns visualized from a sequence of 

computer-aligned angiograms,” Investigative Ophthalmology & 

Visual Science, vol. 34, pp. 2881-2885, September 1993. 

[5] S. Chaudhuri, S. Chatterjee, N. Katz, M. Nelson, and M. Goldbaum, 

"Detection of blood vessels in retinal images using two-dimensional 

matched filters,'' IEEE Transactions on Medical Imaging, vol. 8, pp. 

263–269, 1989. 

[6] J. Lowell, A. Hunter, D. Steel, A. Basu, R. Ryder, and R. Kennedy, 

"Measurement of retinal vessel widths from fundus images based on 

2-D modeling,'' IEEE Transactions on Medical Imaging, vol. 23, pp. 

1196–1202, 2004. 

[7] H. Li, W. Hsu, M.L. Lee, and H. Wang, “A piecewise Gaussian model 

for profiling and differentiating retinal vessels,” In Proc. IEEE  Intl 

Conf Img Proc, pp. 1069-72, 2003. 

[8] T. Zhu, “Fourier cross-sectional profile for vessel detection on retinal 

images,” Comput Med Imaging Graph, vol. 34, pp. 203-12, 2010. 

[9] J. Portilla, V. Strela, M. Wainwright, and E. P. Simoncelli, “Image 

denoising using scale mixtures of Gaussians in the wavelet domain,” 

IEEE Transactions on Image Processing, vol. 12, pp. 1338-1351, 

2003. 

[10] T. Chanwimaluang, G. Fan, "An efficient algorithm for extraction of 

anatomical structures in retinal images,'' in Proc. EUSIPCO, pp. 221–

224, 2006. 

5011


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

