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Abstract— The potential of MP3 compression of surface 

myoelectric signals is explored in this paper. MP3 compression 

is a perceptual-based encoder scheme, used traditionally to 

compress audio signals. The ubiquity of MP3 compression 

(e.g., portable consumer electronics and internet applications) 

makes it an attractive option for remote monitoring and 

telemedicine applications. The effects of muscle site and 

contraction type are examined at different MP3 encoding 

bitrates. Results demonstrate that MP3 compression is 

sensitive to the myoelectric signal bandwidth, with larger 

signal distortion associated with myoelectric signals that have 

higher bandwidths. Compared to other myoelectric signal 

compression techniques reported previously (embedded zero-

tree wavelet compression and adaptive differential pulse code 

modulation), MP3 compression demonstrates superior 

performance (i.e., lower percent residual differences for the 

same compression ratios). 

Keywords – data compression, electromyography, MP3, 

MPEG, myoelectric signals, remote monitoring, telemedicine 

I.  INTRODUCTION 

Myoelectric signals (MES) are electrical signals 
associated with the contraction of a muscle, which are used 
in various research areas and clinical applications, including 
gait analysis, diagnosis of neuromuscular disorders, 
ergonomics, and rehabilitation. Data compression of MES is 
desirable to reduce storage and/or transmission bandwidth 
requirements. When performing long term MES data 
collection [1], multi-channel recordings [2][3], and in 
telemedicine applications [4][5], where the amount of data is 
large and/or the data transmission bandwidth is limited, the 
need is even greater. 

MES is the spatiotemporal superposition of action 
potentials from multiple motor units, which results in a 
signal with strong stochastic characteristics. Signals that 
resemble random processes are often challenging to 
compress. Previous works in MES compression have 
demonstrated success when adopting techniques used in 
speech and audio processing. Norris and Lovely [6] applied 
adaptive differential pulse code modulation (ADPCM) to 
compress MES from static, isometric contractions. This work 
was later extended to include dynamic contractions [7]. 
ADPCM was able to reduce the MES from 12 bits per 
sample to 4 bits per sample, resulting in a compression ratio 
(CR) of 66.7%. Guerrero and Mailhes [8] compared the 

performance of three linear predictive coding methods 
(differential pulse code modulation, multi-pulse coder, and 
code excited linear predictive coder) and two techniques 
based on transform coding (discrete cosine transform and 
discrete wavelet transform). They found that transform 
coding techniques outperformed the linear predictive coding 
methods. Norris et al. [9] applied embedded zero-tree 
wavelet (EZW) encoding, with CR ranging from 60-95%. 
The ADPCM method was found to have a lower amount of 
signal distortion than EZW, for an equivalent CR; however, 
the EZW has the advantage of being able to easily adjust the 
CR to the signal fidelity required by a specific application. 
Carotti et al. [10] employed a technique based on the 
algebraic code excited linear prediction (ACELP), which is 
used for coding speech signals. They reported a CR of 
87.3%, which corresponded to an ACELP bit rate of 12.2 
kbps. A higher CR is possible by lowering the ACELP bit 
rate. Naturally, a higher CR would come at the expense of 
higher signal distortion but this was not examined in their 
work. 

In this paper, MPEG-1 Audio Layer 3 (MP3) encoding is 
used to perform MES compression. MP3 is a lossy audio 
encoding scheme that leverages human psychoacoustic 
models to discard or reduce audio signal components. The 
success of other audio and speech compression techniques 
for MES originally inspired this investigation of MP3 
compression. In addition, in other MES research, mel-
frequency cepstral coefficient signal features, which are also 
based on psychoacoustic models, have been applied 
successfully in myoelectric speech recognition [11][12][13]. 
This suggested that there was merit in exploring MP3 as a 
technique for MES compression. As well, the ubiquity of 
MP3 in consumer audio applications would enable simple 
design and implementation of solutions for MES. There 
already exist real-time MP3 encoders and decoders in 
portable electronics, such as mobile phones and pocket 
portable computers, which would facilitate the 
implementation of a data logger. Applications that stream 
MP3 over the internet would enable remote monitoring 
applications. 

II. METHODS 

A. MES Compression 

MP3 is a perceptual audio coding scheme that 
compresses signals in a manner that efficiently reduces the 
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amount of data (i.e., compresses the data as much as 
possible), while attempting to maintain the perceived audio 
(i.e., the reconstructed signals sounds exactly the same, or 
very similar, to the original signal for human listeners) 
[14][15]. MP3 compression consists of four main stages: 1) 
analysis filterbank, 2) perceptual model, 3) quantization and 
coding, and 4) bitstream encoding. 

The analysis filterbank for MP3 belongs to a class of 
hybrid filterbanks and is comprised of a polyphase filterbank 
followed by a modified discrete cosine transform. The 
filterbank decomposes the input signal into subsampled 
spectral components, which are used with the perceptual 
model to compress the signal, leveraging the phenomena of 
auditory masking. Auditory masking is a result of the 
auditory systems being unable to separate components of a 
complex sound. The perceptual model provides estimates of 
masking thresholds, which are used by the quantization and 
coding block to remove signal components that are 
perceptually insignificant. An attempt is made to keep the 
noise below the masking threshold. A nonlinear power-law 
quantizer is also employed, along with Huffman coding. The 
result is then assembled into the MP3 bitstream. For more 
details on MP3 encoding and decoding, the reader is referred 
to [14] and [15]. 

In this work, MP3 encoding and decoding was performed 
using LAME 3.92 (The LAME Project, 
http://lame.sourceforge.net/), which converts audio files 
between the Windows WAVE (.wav) format and the MP3 
format (.mp3). The default parameters for LAME were 
employed. 

To perform MP3 encoding, digitized MES were first 
converted into the Windows WAVE format. The resultant 
file serves as the input to the LAME MP3 encoder. The 
bandwidth of MES (around 500 Hz) is much smaller than 
audio signals. In order to adapt the MP3 encoder to MES, the 

sampling frequency of the Windows WAVE file was 
modified to be 16 times the actual MES sampling rate (note 
that this does not involve any sample rate conversion, rather 
the sampling rate parameter of the file was simply set at 16 
times higher than the actual sampling rate). Substituting a 
higher sampling frequency value, results in the MP3 encoder 
interpreting the MES as having frequencies that are 16 times 
higher than they actually are. This effect can be appreciated 
when listening to the WAVE files. The MES WAVE files 
sound like they have higher frequency components compared 
to WAVE files where the MES were stored using their actual 
sampling rate. Therefore, from the perspective of the MP3 
encoder, incoming MES samples would appear to have a 
bandwidth that is comparable to speech (around 8 kHz = 16 

× 500 Hz). 
MP3 decoding used the reverse process of encoding. 

LAME was used to convert from the MP3 format to the 
Windows WAVE format. The MES was then extracted from 
the Windows WAVE file. 

B. Dataset 

MP3 compression was evaluated on MES data from 
different contractions types (static and dynamic), as well as 
different muscle groups (biceps and triceps). Data used in 
this work were the same data used in [9]. Data were collected 
using AgAgCl electrodes in a standard bipolar electrode 
configuration. The electrodes were spaced 2.4 cm apart. The 
gain of the amplifier was adjusted to ensure the maximum 
use of the dynamic range of the analog-to-digital converter 
(A/D), without overranging the A/D or the amplifier. The 
MES were filtered with cutoff frequencies of 0.1 Hz and 
1000 Hz. MES were sampled at 2000 Hz and stored in 16-bit 
integer format. 

Data were collected from five subjects that underwent 
two contraction tasks: 1) a static contraction task, and 2) a 

   
(a)     (b)     (c) 

Figure 1. PRD from MP3 compression as a function of CR: a) biceps static contractions, b) triceps static contractions, and c) biceps dynamic contractions. 

   
(a)     (b)     (c) 

Figure 2. Performance comparison of three compression techniques (MP3, EZW, and ADPCM) for MES from: a) biceps static contractions, b) triceps static 

contractions, and c) biceps dynamic contractions. Mean PRD are plotted as a function of CR with standard deviation bars. 
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dynamic contraction task. In the static contraction task, 20 s 
of MES data were simultaneously acquired from the biceps 
and triceps of the right arm while the subject sustained a 
moderate isometric and isotonic co-contraction of both 
muscles. In the dynamic contraction task, 20 s MES data 
were acquired only from the biceps of the right arm. Subjects 

performed a cyclic task, moving their elbow between 40° 

and 90° flexion at a rate of 2 s/cycle (time regulated by an 
electronic metronome), holding a 2.27 kg dumbbell in their 
hand. Further details on the data collection methodology can 
be found in [9]. 

C. Analysis 

The degree of compression was quantified using the CR: 
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where US is the number of bytes in the original MES data 
and CS is the number of bytes in the compressed data. A 
higher CR value corresponds to a higher amount of 
compression. 

The bitrate for encoding was varied from 16 to 160 kbps; 
these bitrates produced a CR range from 65.8% to 96.2%, 
which was similar to the CR range used in [9]. Using the 
results reported in [9], MP3 compression was also compared 
against the EZW and ADPCM techniques. 

Lossless compression techniques are capable of perfect 
reconstruction of the original signal. Lossy compression 
methods, such as MP3 encoding, are capable of obtaining 
higher CRs but at the expense of not being able to perform 
perfect reconstruction. In this work, the percent residual 
difference (PRD) is used to quantify the error in 
reconstruction: 
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where xi are the original data samples, yi are the data samples 
from the reconstructed signal, and N is the signal length. A 
lower PRD corresponds to a lower reconstruction error. 

III. RESULTS 

MP3 compression results are shown in Fig. 1 for all 
subjects and contraction tasks. As expected, as the CR 
increases, there is a tradeoff of increasing PRD. Fig. 1a is a 
plot the PRD as a function of CR for MES from the biceps 
during static contractions and Fig. 1b is the plot for the 
triceps. The results show that the PRD for the biceps are 
lower than the PRD for the triceps. Fig. 1c is a plot of the 
PRD as a function of CR, for all subjects, for MES from the 
biceps during dynamic contractions. With the exception of 
subject 1, the PRD for MES from the biceps during the static 
contractions were lower than the dynamic contractions. 

Fig. 2 are plots of the PRD as a function of CR, averaged 
across subjects; one standard deviation bars are also plotted 
along with the mean values. These figures also compare the 

performance of MP3 compression to the EZW and ADPCM 
techniques [9]. For all contraction types, MP3 compression 
outperforms the other two compression techniques. The 
mean PRD curve of the MP3 technique is 2 to 10% lower 
than the EZW, with larger differences occurring for higher 
CR. As the CR increases, the standard deviation of the PRD 
for both MP3 and EZW increases. This is not surprising, as 
the magnitude of the variation in PRD would be anticipated 
to increase as the magnitude of the PRD increases. At high 
CR, the standard deviations are large relative to the mean 
differences between compression methods; however, when 
examining the results on a per subject basis, the MP3 
compression consistently outperforms EZW for all subjects 
and all CR. ADPCM has a CR of 66.7% and its PRD falls 
near the middle between the MP3 and EZW techniques. 

IV. DISCUSSION 

The difference in PRD for the MP3 compression, 
between the biceps and triceps, is similar to the result found 
in the EZW compression [9]. The EZW also found that the 
MES from the biceps during static contractions had a lower 
PRD than MES from the biceps during dynamic 
contractions. Norris et al. [9] hypothesized that these 
differences in PRD were due to the bandwidth of the MES. 
The EZW performs coefficient reduction using a decreasing 
threshold to achieve a particular CR. Since high frequency 
components are generally smaller than low frequency 
components in MES, EZW compression results in the 
removal or distortion of high frequency content. The PSD of 
these triceps data were shown to have a larger bandwidth 
than these biceps data [9]. Likewise, the MES bandwidths 
from the dynamic contractions were larger than those from 
the static contractions [9]. 

A limitation of MP3 compression is the loss of high 
frequency content [14][16]. As with the EZW technique, the 
differences in PRD for MP3 compression between the 
different muscle groups (biceps versus triceps) and 
contraction types (static versus dynamic) can be also 
explained by the differences in bandwidth; the higher the 
bandwidth, the higher the PRD. Closer examination on a per 
subject basis provides further supporting evidence. Fig. 3 is a 
plot of the power spectral density (PSD) of the biceps MES 
from static contractions, for all subjects. Subject 1 has a 
noticeably larger bandwidth than the remaining subjects and 
in Fig. 1a, we see that there is a corresponding larger PRD 
for this subject. Plotting the PSD for the other contraction 
tasks revealed a similar pattern. For the triceps MES from 
static contractions, subject 4 had the largest high frequency 
components and correspondingly, the highest PRD (Fig. 1b). 
For the biceps MES from dynamic contractions, the high 
frequencies in the PSDs for subject 2 and 5 were very similar 
and distinctly higher than other subjects. Correspondingly, 
these two subjects had the highest two PRDs (Fig. 1c). The 
PRD for subject 5 was higher than subject 2, which could be 
explained by the larger low frequency components for 
subject 2 compared to subject 5. 

V. CONCLUSIONS 

Previous works have examined the use of popular audio 
compression techniques for compressing MES. Application 
of these audio compression techniques (e.g. ADPCM, EZW, 
and ACELP) was sensible because audio signals and MES 
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both exhibit similar stochastic characteristics. To our 
knowledge, this work is the first to explore a perceptual 
audio encoder for MES compression. Perceptual encoders 
leverage the knowledge from psychoacoustics to achieve 
high levels of compression, while maintaining differences 
that are inaudible; however, audio perception of MES is of 
course irrelevant. Despite being designed using 
psychoacoustic models, MP3 has been demonstrated to be an 
effective technique for compressing MES. Results show that 
MP3 compression, compared to EZW and ADPCM, has a 
higher performance (quantified by PRD). Part of the 
increased performance can attributed to the Huffman 
encoding employed in MP3 compression, which is absent in 
the EZW and ADPCM implementations. 

While PRD provides a quantitative measure of 
performance, it is difficult to discern the implications from 
these results. Future work will provide an examination of 
MP3 compression of MES within specific applications. For 
example, we will examine the effect of MP3 compression on 
the mean and median frequencies, which are conventional 
measures used for muscle fatigue estimation. Preliminary 
results on MES data used for research on myoelectrically 
controlled prostheses [17], demonstrated that a CR of up to 
82.5% can be obtained with negligible impact; 
uncompressed MES had a classification accuracy of 93.87% 
across 30 subjects and the compressed MES were within 
0.38% of this value. As the CR can be adjusted to improve 
signal fidelity, MP3 compression can be configured to the 
needs of any application. 

The popularity of MP3, including portable consumer 
electronics and internet applications, makes this technique an 
attractive option for MES compression. Off-the-shelf 
solutions can be easily adapted to MES. In this work, to 
adapt MES to MP3 encoding, the input sampling rate was set 
at 16 times the actual MES sampling rate; equivalently, this 
would correspond to running the encoder or decoder at 1/16 
the normal rate. MP3 encoding of multiple MES channels 
can be also performed, using a data buffer and a multiplexer, 
by interleaving segments of MES data into a data stream for 
a single MP3 encoder. With the current implementation one 
could implement a 16 channel system with mono MP3 
encoding or a 32 channel system with a stereo MP3 encoder. 

Performance of MP3 compression appears to be sensitive 
to high frequency content, similar to EZW. Newer audio 
compression formats, such as Windows Media Audio Pro 

(Microsoft, Redmond WA), Vorbis (Xiph.org Foundation, 
http://www.xiph.org), Real Audio (RealNetworks, Seattle 
WA) may have better high frequency performance and can 
be explored as alternative methods. 
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Figure 3. Power spectral density for biceps during static contractions. 
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