
  

 

Abstract—Partial Directed Coherence (PDC) is a powerful 
tool to estimate a frequency domain description of Granger 
causality between multivariate time series. One of the main  
limitation of this estimator, however, has been so far the 
criteria used to assess the statistical significance, which have 
been obtained through surrogate data approach or arbitrarily 
imposed thresholds. The aim of this work is to test the 
performances of a validation approach based on the rigorous 
asymptotic distributions of PDC, recently proposed in 
literature. The performances of this method, defined in terms 
of percentages of false positives and false negatives, were 
evaluated by means of a simulation study taking into account 
factors like the Signal to Noise Ratio (SNR) and the amount of 
data available for the estimation and the use of different 
methods for the statistical corrections for multiple 
comparisons. Results of the Analysis Of Variance (ANOVA) 
performed on false positives and false negatives revealed a 
strong dependency of the  performances from all the factors 
investigated. In particular, results indicate an amount of Type I 
errors below 7% for all conditions, while Type II errors are 
below 10% when the SNR is at least 1, the data length of at 
least 50 seconds and the appropriate correction for multiple 
comparisons is applied.  

 

I. INTRODUCTION  

 
N the latest years, the estimation of functional connectivity 
has become more and more central in neuroscience to 

understand brain networks at the basis of motor and 
cognitive processes. Among different estimators of 
connectivity between time series, Partial Directed Coherence 
(PDC) [1] is a spectral estimator of Granger causality 
between multivariate time series [2]. Different estimators 
generalizing PDC were developed during the year [3]-[4]-[5] 
to improve the accuracy and the stability of the connectivity 
estimation performed. However, all these generalized 
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quantities need a method to assess their statistical 
significance. Different methods used so far for the validation 
of connectivity patterns are based on the imposition of an 
arbitrary threshold, like the Spectral Causality Criterion 
(SCC) [6], or on a surrogate data approach like in the 
Shuffling procedure [7], based on an empirical distribution 
of the null hypothesis obtained with a time consuming 
procedure.  

Recently, a validation approach based on the rigorous 
asymptotic distributions of PDC was proposed [8] . This 
new method is based on the assumption that the PDC 
estimator tends to a χ2 distribution in the null case (lack of 
transmission) and has been introduced to overcome the 
limits of existing methods.  
 All the assessing methods required the definition of a 
significance level to be applied for the evaluation of the 
statistical threshold for every possible connection between 
signals in the multivariate dataset. Due to the high number of 
statistical assessments performed, it is necessary to apply 
corrections to the significance level imposed in the 
validation process, in order to prevent the occurrence of type 
I errors [9]. 

This work aims at testing the performances of the new 
asymptotic statistic in terms of percentages of type I and 
type II errors by means of a simulation study. Results will 
provide an estimation of the levels of error to be attended 
under specific conditions and a statistical analysis (Analysis 
Of Variance, ANOVA) of the dependency of the 
performances from factors like the Signal to Noise Ratio 
(SNR) and the amount of data used for the estimation. The 
application of different methods for the corrections for 
multiple comparisons was also investigated, to suggest the 
best approach resulting from the analysis of the 
performances. 

II. METHODS 

A. Multivariate Methods for the Estimation of 
Connectivity 

Supposing that the following multivariate autoregressive 
(MVAR) model is an adequate description of the dataset Y: 
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where Y(t) is the data vector in time, E(t) is a vector of 
multivariate zero-mean uncorrelated white noise processes, 
Λ(k) is the matrix of model coefficients at lag k and p is the 
model order. In the present study, p was chosen by means of 
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the Akaike Information Criteria (AIC) for MVAR processes 
[10].  

To investigate the spectral properties of the examined 
process, (1) is transformed to the frequency domain: 
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where Δt is the temporal interval between two samples. 
 

B. Partial Directed Coherence 

The PDC [1] is a full multivariate spectral measure, used 
to determine the directed influences between any given pair 
of signals in a multivariate data set. This estimator was 
demonstrated to be a frequency version of the concept of 
Granger causality [2]. 

It is possible to define PDC as: 
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Different estimators generalizing PDC were developed 
during the years [3]-[4]-[5]. However, different 
normalization do not affect the asymptotic statistic 
procedure since they affect the values of the estimator and 
the threshold in the same way, with a linear dependency. 

Squared values of PDC were shown to provide higher 
accuracy and stability  [5]. 
 

C. Statistical Assessment of Connectivity Estimate: 
Asymptotic Statistic 

In order to assess the significance of the estimated causal 
links, the value of functional connectivity for a given pair of 
signals, obtained by computing PDC, must be compared 
with a threshold level which is computed for the null case 
(lack of causality between the considered signals). 

Threshold values were estimated using asymptotic 
statistic method [8] which is based on the assumption that 
PDC in the null case follows a χ2 distribution [11]. The 
statistical threshold is achieved by means of a χ2 distribution 
obtained by applying a Monte Carlo method. The percentile 
related to the significance level imposed is then computed. 

D. Statistical Correction in Multiple Comparisons  

Due to the high number of comparisons between PDC 
values and statistical thresholds, a correction for multiple 
comparisons issue is needed to avoid the occurrence of type 
I errors (false positives). The statistical theory provides 
different correction algorithms. We considered here the two 
most used ones, the traditional Bonferroni adjustments  [12] 
and the more recently introduced False Discovery Rate 

(FDR) [13]. 

E. Simulation Study 

The simulation study involved the following steps: 
1) Generation of different simulated datasets fitting a 
predefined model, composed by 4 cortical areas and 
achieved imposing different levels of Signal to Noise Ratio 
(factor SNR: 0.1, 1, 3, 5, 10) and data length (factor 
LENGTH: 3000, 10000, 20000, 30000 data samples, 
corresponding to a signal length of 15 50 100 150 s, at a 
sampling rate of 200 Hz). The imposed model is reported in 
Fig.1. x1(t) is a real signal acquired at the scalp level during 
an high resolution EEG recording session (64 channels) 
from a healthy subject in a rest condition with opened eyes. 
The other signals x2(t),…, x4(t) were iteratively achieved 
according to the predefined scheme. In particular, the signal 
xj(t) is obtained adding uncorrelated Gaussian white noise to 
all the contributions of other signals xi(t) (with i≠j), each of 
which amplified of aij and delayed of τij. Connection 
strengths imposed to the simulated signals are a12=0.5, 
a13=0.4 a14=0.2, a23=0.08. Such values are chosen in a range 
typical for EEG signals. The values used for the delay in 
transmission are τ12=2, τ13=2, τ14=1, 23=4 data samples. To 
improve the robustness of the successive statistical analysis, 
the generation of datasets under each combination of factors 
was repeated 100 times. 
2) Evaluation, for each dataset, of MVAR coefficients and 
estimation of  PDC under different conditions. 
3) Application of the asymptotic statistic procedures in 
order to assess the significance of estimated connectivity 
patterns by imposing a significance level of 0.05 in three 
different cases: no correction, FDR and Bonferroni 
adjustments for multiple comparisons (factor 
CORRECTION). 
4) Computation of the total percentage of false positives 
and false negatives occurred in the assessment of 
significance of connectivity patterns for all the considered 
factors.  
5) Analysis Of Variance (ANOVA) for repeated measures 
of the percentage of false positives and false negatives, in 
order to evaluate the effects of some factors (SNR, 
LENGTH, CORRECTION) on the performances of the 
analyzed method.  
 

Fig. 1 – Connectivity model imposed in the generation of testing dataset. 
x1,…, x4 represent the signals of four cortical regions of interest. aij 
represent the strength of the imposed connection between nodes i and j, 
while τij represents the delay in transmission applied between the two 
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signals xi and xj in the generation of the dataset.  

 

F. Statistical Analysis 

The statistical analysis consisted in two three-way 
ANOVAs aiming at studying the effect of factors like the 
SNR, the amount of data (LENGTH) and the type of 
adjustments for multiple comparisons on the percentages of 
false positives and false negatives returned after the 
statistical assessment of PDC. The within main factors of the 
ANOVA were SNR (with five levels: [0.1, 1, 3, 5, 10]), 
LENGTH (with four levels: [3000, 10000, 20000, 30000] 
data samples) and CORRECTION (with three levels: no 
corrections, FDR correction and Bonferroni adjustment).  

The dependent variables were the percentages of false 
positives and false negatives returned after the statistical 
assessment of PDC. The post-hoc analysis with the Duncan 
test at a statistical significance level p=0.05 was then 
performed. 

 

Fig. 2. Results of ANOVA performed on the Percentage of False Positives 
(a) and False Negatives (b): plot of means with respect to the interaction 
between the signal to noise ratio (SNR) and statistical corrections for 
multiple comparisons (CORR). ANOVA shows a high statistical 
significance (F=25.4, P<0.0001) for the case a) and (F=372,  
P<0.0001) for the case b), respectively.  

III. RESULTS 

A MVAR model of order 16 was fitted to each set of 
simulated data. The procedure of signal generation and PDC 
estimation was repeated 100 times for each level of factors 
SNR and LENGTH in order to increase the robustness of the 

statistical analysis. The percentages of false positives and 
negatives were computed for each iteration and then 
subjected to the three way ANOVA. 

 

Fig. 3. Results of ANOVA performed on the Percentage of False Positives 
(a) and False Negatives (b): plot of means with respect to the interaction 
between signal LENGTH (in seconds) and statistical corrections for 
multiple comparisons (CORR). ANOVA shows a high statistical 
significance (F=141.11, P<0.0001) for the case a) and (F=1145.3,   
P< 0.0001) for the case b), respectively.  

 
Results of three way ANOVA computed by setting as 

dependent variable the percentage of false positives revealed 
a strong statistical influence of the main factors SNR           
(F = 27.76, p < 0.0001), LENGTH (F = 184.75, p < 0.0001), 
and CORRECTION (F=9308.8, p<0.0001), as well as their 
interactions SNR x LENGTH (F=7.36, p<0.0001), SNR x 
CORRECTION (F=25.43, p<0.0001),  LENGTH x 
CORRECTION (F=141.11, p<0.0001).  

Results of three way ANOVA computed by setting as 
dependent variable the percentage of false negatives 
revealed a strong statistical influence of the main factors 
SNR (F=460.62, p<0.0001), LENGTH (F=9520, p<0.0001), 
and CORRECTION (F=16661, p<0.0001), as well as their 
interactions SNR x LENGTH (F=213.45, p<0.0001), SNR x 
CORRECTION (F=372,01, p<0.0001),  LENGTH x 
CORRECTION (F=1145.3, p<0.0001).  

Fig. 2 shows the influence of the different levels of the 
main factors CORRECTION and SNR on the percentage of 
false positives (panel a) and false negatives (panel b). The 
bar on each point represents the 95% confidence interval of 
the mean errors computed across the simulations. The plot in 
panel a) indicates a low increase of the percentage of false 
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positives for increased values of SNR of the generated 
signals, with the mean values remaining under 6% for all the 
SNR levels and all the corrections.  

The plot in panel b) shows a high decrease of the 
percentage of false negatives for increased values of SNR of 
the generated signals, but the mean percentage of false 
negatives overcame 6% threshold for all the SNR levels and 
all the corrections. Post hoc analysis revealed statistical 
differences between SNR 0.1 and all the other SNR levels, 
for each correction.   

Fig. 3 shows the influence of the different levels of the 
main factors CORRECTION and LENGTH on the 
percentage of false positives (panel a) and false negatives 
(panel b). The bar on each point represents the 95% 
confidence interval of the mean errors computed across the 
simulations. The plot in panel a) indicates a low increase of 
the percentage of false positives for increased values of 
signals LENGTH, even if the mean values remained under 
8% for all the LENGTH levels and all the CORRECTIONS.  

The plot in panel b showed a high decrease of the 
percentage of false negatives for increased values of data 
LENGTH, reaching values below 5% for LENGTH 100 and 
150s for FDR and Bonferroni CORRECTIONS. Post hoc 
analysis revealed statistical differences between all the 
LENGTH levels for all the considered corrections.   

 

IV. DISCUSSION 

The results provided by the simulation study suggest that 
the new method for the assessment of PDC significance is a 
valid tool for the validation of connectivity patterns. In fact, 
considering SNR and LENGTH values largely met, for 
instance, in EEG recordings, the occurrence of type I errors 
is below 6% for all the three CORRECTIONS levels. Higher 
percentages of  type II errors resulted for both SNR and 
LENGTH levels. However, it must be noted that the 
presence of a very weak connection in the model imposed to 
simulated data (2->3) could be responsible of the increase of 
the number of false negatives. As expected, as the severity 
of correction method increased (from no corrections to FDR 
and Bonferroni) the percentage of false positives is reduced 
and the percentage of false negatives is increased. In 
particular, the FDR method seems to provide the best 
compromise in preventing both type I and type II errors. 

In conclusion, the estimation of connectivity patterns on 
high quality data (good SNR or huge amount of samples) 
can assure low percentages of both type I and type II errors 
even without considering severe statistical corrections such 
as Bonferroni. If the data are characterized by low SNR or 
signals length, statistical corrections are requested for 
controlling the estimation performances in terms of type I 
errors. However, it should be taken into account that this 
could lead to a loss of weaker connections. 

V. CONCLUSION 

Results achieved by the simulation study highlighted the 
possibility to use the new Asymptotic Statistic as a valid 

alternative to the already existent procedures for the 
validation of the connectivity patterns estimated by PDC.  

In fact, such method overcomes the limits of SCC, by 
providing a statistical threshold for each connection in the 
network and for each frequency sample and it takes into 
account the risk of type I errors. Moreover, the procedures 
adopted in this approach are faster and less computationally 
demanding than those used in the Shuffling method, which 
is currently the standard in the field. Future studies will be 
focused on a systematic and statistical comparison with the 
performances (in terms of false positives and false 
negatives) achieved by the previously available validation 
methods. 
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