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Abstract— Synchrony is a phenomenon of local-scale and
long-range integrations within a brain circuit. Synchronous
activities manifest themselves in similar temporal structures
that can be statistically quantified by temporal correlation.
In previous studies, synchronous activities were estimated by
calculating the correlation coefficient or coherence between
a single reference signal and the activity in a brain region.
However, a brain circuit may involve multiple brain regions and
these regions may communicate to each other through different
temporal patterns. Therefore, temporal correlation to multiple
reference signals is effective in quantify the source connectivities
in the brain. This paper proposes a novel algorithm to calculate
the maximum multiple-correlation for each brain region which
has an activity estimated by a beamformer. Furthermore, this
algorithm can accommodate various latencies of activities in
a circuit. Experimental results demonstrate that the proposed
method can accurately detect source activities correlated to the
given multiple reference signals, even when unknown latencies
exist between the source and references.

I. INTRODUCTION

Investigating temporal relationships between both neural
activities and field potentials are crucial to understand how
the brain works [1]. Temporally correlated neural activi-
ties may provide information for constructing the connec-
tivities between brain areas. In [2], the temporal correla-
tion in functional magnetic resonance imaging (fMRI) and
positron emission tomography (PET) data was applied to
study the functional connectivities. Compared to the slow
hemodynamic changes in fMRI and PET data, magneto-
/electroencephalography (MEG/EEG) measure the electro-
magnetic signals directly induced by the neural activities
and have a high temporal resolution. Therefore, MEG and
EEG are better suited for the investigation of the temporal
dynamics of brain activities.

The electromagnetic signals detected by MEG/EEG sen-
sors are a mixture of brain sources. There is no unique
solution for unmixing the brain sources when no constraint
or prior information is provided. The connectivity analysis at
the source space is thus inherently affected by the accuracy of
inverse solution [3]. It has been reported that the beamformer
outperformed the minimum norm method in the source
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connectivity analysis [3]. Dynamic imaging of coherence
sources (DICS) is a beamformer-based method which de-
signs the spatial filter with maximum coherence between the
filtered and reference signals at a specified frequency band
[4]. However, DICS cannot tackle the latencies of coherent
activities, resulting from propagation delays in either local-
scale or long-range communication.

Compared to coherence, temporal correlation is a rela-
tively more generalized measure for temporal relationship.
It has been used to quantify connectivities at the sensor
level [5], [6] and source space [7]. A beamformer-based
method which optimizes spatial filter according to a max-
imum correlation criterion has been proposed to estimate
source connectivities [7]. Compared to DICS, this method
can provide closed-form solutions for dipole orientations.
However, both methods can only estimate the coherence
or temporal correlation according to one reference signal.
The single reference signal can be obtained by averaging
all the source signals in a reference region, at the expense
of losing temporal information. Moreover, a brain circuit
may involve multiple brain areas containing distinct brain
activities. Therefore, estimating source connectivities with
multiple reference signals is more appropriate than that with
only one reference signal.

This paper presents a beamformer-based method for spa-
tiotemporal imaging of temporally correlated brain activities
with unknown latencies. For a targeted position, a spatial
filter is designed to estimate the source activity which has
maximum correlation to a linear combination of multi-
ple reference signals. The dipole orientation is analytically
determined with a closed-form solution. To accommodate
the propagation delays in a neural circuit, we expand the
reference signals by adding in their replicas with various
latencies. The distribution of estimated multiple-correlation
values reveals the source connectivities of the brain which
are associated with the given reference signals. Moreover, our
method can determine the major components and latencies
for each source activity.

II. METHODS AND MATERIALS

A. Forward Model

A lead field vector lθ ∈ RC describes how a unit dipole
source contributes to C MEG/EEG sensors as follows,

lθ = Grq , (1)

where θ = {r,q} is a set of parameters representing the
dipole position r ∈ R3 and orientation q ∈ R3, Gr ∈ RC×3

is a C-channel gain matrix for the unit dipole located at r.
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The ensemble of the brain activities can then be described
by a forward model [8],

m(t) = Ls(t) + n(t) , (2)

where m(t) = [m1(t)m2(t) . . .mC(t)]T ∈ RC represents
the signals of all channels at time t, L = [lθ1 lθ2 . . . lθZ ] ∈
RC×Z is the lead field matrix composed of Z lead field
vectors, s(t) = [s1(t) s2(t) . . . sZ(t)]T ∈ RZ represents the
activities of all Z dipole sources at time t in a predefined
source space composed of either the vertices constructing a
cortical surface or the voxels in magnetic resonance (MR)
images.

B. Spatial Filter Design

In the scalar-type beamforming method [9], the signal
yθ(t) for a dipole source with parameter θ is estimated by
using a spatial filter wθ ∈ RC as follows:

yθ(t) = wθ
Tm(t) . (3)

To minimize the contributions from other sources or noises
while maintaining the amplitude of the targeted source, the
minimum variance constraint and the unit-gain constraint,
wθ

Tlθ = 1, are applied to calculate the optimal spatial filter
ŵθ as follows:

ŵθ = arg min
wθ

E
{
|y(t)− E {y(t)} |2

}
+ α‖wθ‖2

s.t. wθ
Tlθ = 1 ,

(4)

where E{·} is denoted as expectation and α is a parameter of
Tikhonov regularization. Eq. (4) can be solved by Lagrange
multipliers and the optimal solution to the spatial filter is

ŵθ =
(Σ + αI)−1lθ

lθT(Σ + αI)−1lθ
, (5)

where Σ ∈ RC×C is the covariance matrix of the MEG/EEG
measurements m(t) during a specified period of time.

C. Source Connectivity Estimation

In this study, the source connectivities are statistically
quantified by means of the multiple correlation values be-
tween the filtered source signals, aθ(t) = wθ

Tma(t), and a
set of K reference signals, b(t) = [b1(t), b2(t), . . . , bK(t)]T.
Notice that m(t) and ma(t) are extracted from the same
MEG/EEG recordings but probably with different time in-
tervals. The time interval of ma(t) is for calculating the
multiple correlation value and should have the same length
as each reference signal bk(t), k = 1, . . . ,K. The multiple
correlation is a measure of fitting in a linear regression
model:

aθ(t) = fTb(t) + ε(t) , (6)

where f = [f1, f2, . . . , fK ]T is a column vector composed
of weights fk for reference signals bk(t), k = 1, . . . ,K, and
ε(t) is the residual. The multiple correlation coefficient Rθ
is generally defined as

Rθ = max
f

Corr
(
aθ(t), fTb(t)

)
. (7)

Under a minimum mean square error criterion, the optimal
solution of the weighting vector is

f̂ = Σ−1
bbσbaθ , (8)

where Σbb ∈ RK is the covariance matrix of reference
signal b(t), and σbaθ is the vector of cross-covariance
between b(t) and aθ(t). Then the optimal approximation of
aθ(t) in terms of all K reference signals becomes

âθ(t) = f̂Tb(t) = σT
baθ

Σ−1
bbb(t) . (9)

Finally, the value of multiple correlation Rθ can be calculated
by

Rθ = Corr (aθ(t), âθ(t)) =

(
σT
baθ

Σ−1
bbσbaθ

σaθaθ

) 1
2

, (10)

where σaθaθ is the variance of the filtered signal aθ(t).
If the covariance matrix Σbb is full-rank, b(t) can be

linearly transformed to be a set of uncorrelated signals
p(t) = [p1(t), p2(t), . . . , pK(t)]T using the eigenvectors and
eigenvalues decomposed from Σbb. The multiple correlation
between aθ(t) and b(t) equals to that between aθ(t) and
p(t), that is,

Rθ =

(
σT
paθ

Σ−1
ppσpaθ

σaθaθ

) 1
2

=

(∑K
k=1 σpkaθ

2

σaθaθ

) 1
2

, (11)

where Σpp is the covariance matrix of p(t) and σpaθ =
[σp1aθ , . . . , σpKaθ ]

T is the vector of the cross covariance
between the uncorrelated signals p(t) and the filtered signal
aθ(t). It can then be formulated in terms of the spatial filter
and measurements as follows,

Rθ =

wθ
T
(∑K

k=1 σmapkσmapk
T
)

wθ

wθ
TΣmama

wθ


1
2

, (12)

where Σmama is the covariance matrix of MEG/EEG record-
ings ma(t) and σmapk is the vector of cross covariance
between ma(t) and the k-th uncorrelated reference signal,
pk(t), k = 1, . . . ,K.

D. Maximum Multiple-Correlation Beamformer

The optimal spatial filter shown in (5) can be rewritten as

ŵθ =
(Σ + αI)−1Grq

qTGT
r (Σ + αI)−1Grq

=
Crq

qTDrq
, (13)

where Cr = (Σ + αI)−1Gr and Dr = GT
r Cr. To extract

the source component with maximum multiple correlation to
the reference signals, we estimate the dipole orientation q by

q̂ = arg max
q

wθ
T
(∑K

k=1 σmapkσmapk
T
)

wθ

wθ
TΣmama

wθ

= arg max
q

qTPrq
qTQrq

, (14)

where

Pr = CT
r

(
K∑
k=1

σmapkσmapk
T

)
Cr , Qr = CT

r Σmama
Cr .
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TABLE I
CONFIGURES OF TEMPORAL WAVEFORMS IN SIMULATIONS 1 AND 2

Simulation Source position frequency amplitude peak time reference
(Hz) (nAm) (ms) design

1
1 r1

17 3 200 Ref 1.15 1 200

2 r2
17 1 200 Ref 1.25 3 200

2

3 r3 17 3 200 Ref 2.2

4 r4 5 3 200 Ref 2.7

5 r5
17 2 500
5 1 500

The optimal dipole orientation, q̂, is the eigenvector
corresponding to the maximum eigenvalue of the matrix
Q−1

r Pr. Because Pr and Qr are both 3 × 3 matrices, the
optimal solution for (14) is a closed-form solution. With
given reference signals together with the time period for
extracting ma, we can calculate Pr and Qr and then obtain
q̂ according to (14). Finally, ŵ can be calculated by applying
q̂ to (13) and the multiple correlation value for the dipole
source at location r can be calculated by applying ŵ to (12).

E. Materials

The MEG data for Simulations 1 and 2 were both com-
posed of 10 one-second trials contributed from two and three
dipole sources, respectively. Each dipole source located at
ri, i = 1, . . . , 5, was associated with one or two amplitude-
modulated cosine waveforms, as shown in Table I and Fig. 1.
In Simulation 1, the locations of the two dipole sources were
close and the associated temporal waveforms, Sources 1 and
2, were highly correlated (correlation value = 0.6110). In
Simulation 2, Source 5 was the composite of Sources 3 and
4 with 300-ms time lags and the ratio of Sources 3 to 4 was
2 : 1. Moreover, 3000 dipoles placed in random locations
with strength 0.1 nAm were added to each of the MEG
data for simulating background activities. The MEG data
shown in Figs. 2(a) and 2(b) were generated by the forward
model (2) according to the configure of a whole head 204-
gradiometer system (Neuromag Vectorview).

For each simulation, as shown in Fig. 2, the time intervals
for extracting ma(t) and m(t) (the green dotted-boxes) are
the same as the interval for extracting b(t) (the red dotted-
boxes). In Simulation 1, two sets of 300-ms reference signals,
as shown in Figs. 2(c) and 2(d), were applied to the source
connectivity analysis. The first set composed of two signals
(Refs 1.1 and 1.2) extracted from Sources 1 and 2 between
50 and 350 ms, whereas their average (Ref 1.3) was used as
the reference signal in the second set.

In Simulation 2, two reference signals were extracted from
Sources 3 and 4 between −25 and 625 ms. To accommodate
the unknown latencies of activities, the set of reference
signals was expanded by inserting replicas of the original
two reference signals with peak times shifted to 100, 300,
400, and 500 ms, as shown in Fig. 2(e). Notice that the
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Fig. 1. Locations (left) and temporal waveforms (right) of dipole sources
in Simulations 1 and 2

information of Source 5 was not used in the design of
reference signals.

III. RESUTLS

In Simulation 1, the multiple-correlation map associated
with the reference signals extracted from source signals is
shown in Fig. 2(f). The two estimated peak positions are
exactly at the ground-truth positions, r1 and r2, with high
correlation values (0.9354 and 0.9424). However, as shown
in Fig. 2(g), when a reference signal is the average of source
signals, there is only one peak located between r1 and r2 in
the multiple-correlation map with a low multiple-correlation
value (0.1958).

In Simulation 2, the multiple-correlation map, as shown
in Fig. 2(h), reveals three peaks exactly at the ground-
truth positions, r3, r4, and r5. For the three peak positions,
the associated optimal weights f̂ for linearly combining the
reference signals are illustrated as the bar charts shown in
Fig. 3. The bar charts demonstrate that the major components
of the filtered signals at r3 and r4 are Refs 2.2 and 2.7,
respectively. Moreover, Refs 2.5 and 2.10, which are Sources
3 and 4 with 300-ms latencies, respectively, constitute the
major part of the filtered signal at r5 with around two-to-
one ratio.

IV. DISCUSSION AND CONCLUSIONS

The two simulation studies have demonstrated that the
proposed method can detect correlated activities with zero
location errors when the reference signals provide adequate
temporal information. On the other hand, incorrect design of
reference signals may cause inaccurate estimation results of
source connectivities. For example, the results of Simulation
1 demonstrate that using an averaged signal as a reference
signal caused incorrect localizations of the correlated sources
with low correlation values. Therefore, using temporal cor-
relation to multiple reference signals stands a better chance
of detecting source connectivities than that of using only one
reference signal.
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Fig. 2. MEG data generated in (a) Simulation 1 and (b) Simulation 2.
Both MEG data are bandpass filtered with cutoff frequencies at 0.5 and 40
Hz. Three sets of reference signals are shown in (c)-(e) and the associated
multiple-correlation maps calculated by the proposed method are shown in
(f)-(h). The blue, green, yellow, purple, and red nodes overlaying these maps
indicate the ground-truth positions, r1, r2, r3, r4, and r5, respectively. The
time intervals of ma(t) are the same as those of m(t), which are illustrated
by the green dotted-boxes. The red dotted-boxes illustrate the time intervals
of b(t).
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Fig. 3. Optimal weights f̂ for the linear combinations of the ten reference
signals in Simulation 2.

In [7], the unknown latency problem of correlated activity
estimation was tackled by sliding the reference signal within
a time interval and repeating the whole correlation estimation
procedure for each latency, at the expense of massively
increased computational burden. On the contrary, as demon-
strated by the results of Simulation 2, the proposed method
efficiently estimate the latencies in a single step. This is
because multiple reference signals including the replicas with
various latencies can be simultaneously applied to estimate
the correlated activities.

The results of Simulation 1 have demonstrated that the in-
formation from reference signals affects the results of source
connectivity analysis. Moreover, the number of reference
signals is limited by the duration of reference signals. To
maintain a concise and informative set of reference signals,
redundant ones should be detected and removed beforehand.
If peripheral physiological signals are used as the reference

signals, the estimated multiple-correlation maps will reveal
the cortico-peripheral connectivities. If the reference signals
are the source activities of the cortical regions of interest,
the associated multiple-correlation map will reveal cortico-
cortical connectivities. Independent components decomposed
from MEG/EEG recordings can also be reference signals.
The associated multiple-correlation map may represent the
cortical distributions of components.

The latencies between correlated activities may be short
and the period of correlated activities may be transient in
real data. Therefore, the temporal resolution of the pro-
posed method requires further investigation. Furthermore,
for one reference signal, the latencies of its replicas can
be different from other references. The latencies can be
designed according to the spectral density of the reference
signal or adaptively adjusted according to the estimation
results. In this study, the orientations of correlated sources
were assumed invariant during the time interval of m(t). If
multiple dipole sources with different orientations are located
at the same position, the source connectivity analysis may
yield inaccurate results.

This paper presents a beamformer-based method which
can estimate the spatiotemporal dynamics of correlated ac-
tivities. For each targeted position, a spatial filter is designed
to estimate its source activities with maximum multiple
correlation to multiple reference signals. Distribution of the
multiple correlation values can reveal source connectivities.
Moreover, if the reference signals were expanded by adding
their replicas with various latencies, the proposed method
can also be applied to estimate the latencies of activities at
interacting regions.
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