
Bayesian model evidence for order selection and correlation testing

Leigh A. Johnston, Iven M. Y. Mareels and Gary F. Egan

Abstract— Model selection is a critical component of data
analysis procedures, and is particularly difficult for small
numbers of observations such as is typical of functional MRI
datasets. In this paper we derive two Bayesian evidence-
based model selection procedures that exploit the existence
of an analytic form for the linear Gaussian model class.
Firstly, an evidence information criterion is proposed as a
model order selection procedure for auto-regressive models,
outperforming the commonly employed Akaike and Bayesian
information criteria in simulated data. Secondly, an evidence-
based method for testing change in linear correlation between
datasets is proposed, which is demonstrated to outperform
both the traditional statistical test of the null hypothesis of
no correlation change and the likelihood ratio test.

I. INTRODUCTION

Model comparison and model selection procedures are of

fundamental importance to system identification techniques;

implicit in the inference of a system’s states and parameters

is the understanding that estimates are meaningful only in

the context of the chosen system model. The assessment

of model fit according to an objective criterion is therefore

a critical step in data analysis. Bayesian model evidence

(BME) quantifies the fit of a model to a given set of data.

The calculation of BME can however be non-trivial, often

requiring approximation via Variational Bayes techniques or

Markov chain Monte Carlo methods in order to render the

calculation tractable [1].

We investigate the closed form expression for BME of

the linear Gaussian model class that exploits the ability to

marginalise over the model class parameters [2]. We present

two identification procedures arising from the analytic BME

expression: (1) An evidence information criterion, similar in

form to the Akaike information criterion [3] and Bayesian

or Schwarz information criterion [4], is proposed, in which

a penalty dependent on the model order is applied to the

maximised likelihood function. We apply the evidence in-

formation criterion to estimation of model order for au-

toregressive models of moderate length time-series, as is

commonplace in fMRI analyses [5]. (2) The statistical testing

of correlation changes between brain regions, indicating

connectivity differences [6], has traditionally been achieved

using the normalising transformation suggested by Fisher [7],
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[8]. Following an evidence-based reasoning, we propose a

test for change in linear relationship between two datasets

that is both simple to implement and is shown to be more

sensitive and specific than Fisher’s method.

II. THEORY

Let y be a (n × 1) vector and X a (n × p) matrix of

observed real-valued data. The linear Gaussian model class,

MG, considered here-in is defined by parameters ΘG =
{a,σ}, according to the relationship

y = Xa + e, e ∼ N(0n,σ
2In), (1)

where a ∈ R
p is a (p× 1) vector of unknown parameters,

and σ > 0 is an unknown standard deviation. Here 0n and

In denote a length n zero vector and an nxn identity matrix,

respectively.

The Bayesian evidence of model MG for observed data

{y,X} is given by the denominator of the Bayes rule expan-

sion for model MG. For notational simplicity, we define the

term ‘evidence’ to denote the Naperian log evidence:

E (y,X,MG) = ln

Z

σ

Z

a
P(y,X|a,σ) P(a) P(σ) da dσ, (2)

which, for the linear Gaussian model class, evaluates to the

closed form expression [2]

E (y,X,MG) = lnΓ

(

n− p

2

)

−
1

2
ln |X′X|−

n− p

2
ln(2π)

+

(

n− p

2
−1

)

ln2−

(

n− p

2

)

lnS + ln f (p). (3)

Here Γ is the gamma function, f is a known parametric

function and S is the residual sum of squares,

S = y′(I−X(X′X)−1X′)y. (4)

The choice of priors is critical to the evidence calculation.

Noninformative, improper priors for the parameters of the

Gaussian distribution are the flat prior for a and the scale

invariant P(σ) = 1/σ for the standard deviation [1]. The

flat prior for P(a) is problematic, however, as comparison

of models with different dimensions can cause an a priori

determined outcome regardless of the data, known as the

Barlett or Lindley paradox [9]. The predominant approach

proposed to avoid this problem is to use proper priors. This

is the approach we follow here, with the proposal that the

prior over a is a parametric function of the dimension of a

only: P(a) = f (p) > 0.
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III. EVIDENCE INFORMATION CRITERION

The primary use of BME is in model selection, where the

largest evidence computed over a set of competing models is

chosen as the best model of a particular dataset. The analytic

expression for the linear Gaussian Bayesian model evidence

enables derivation of an evidence information criterion (EIC),

similar in form to the popular Akaike (AIC) and Bayesian

(BIC) information criteria. Akaike developed the AIC in the

early 1970’s as an information theoretic criterion grounded

in model prediction rather than traditional hypothesis testing

that he perceived to be subjective [3]. The BIC, proposed by

Schwarz in 1978, is derived from an asymptotic Bayesian

expansion that is therefore optimal at large sample sizes.

In contrast, the EIC proceeds directly from the closed form

BME expression for the linear Gaussian model class, as

follows.

The maximum likelihood estimates of the parameters of

the linear Gaussian signal model are

aML = (X′X)−1X′y, σML =

√

S

n
. (5)

The value of the log likelihood function evaluated at the

ML estimates is

lnP
(

y,X
∣

∣

∣
aML,σML

)

=
n

2
lnn−

n

2
ln(2π)−

n

2
lnS−

n

2
. (6)

The “Evidence Information Criterion”, based on BME,

results from direct comparison of (6) and (3):

EIC = −2lnP
(

y,X
∣

∣

∣
aML,σML

)

− p ln(2π)−2lnΓ

(

n− p

2

)

+ ln |X′X|− (n− p−2) ln2 + n(lnn−1)− p lnS

−2ln f (p). (7)

The scale factor of 2 ensures the same functional form as

the Akaike and Bayesian information criteria:

AIC = −2lnP
(

y,X
∣

∣

∣
aML,σML

)

+ 2p (8)

BIC = −2lnP
(

y,X
∣

∣

∣
aML,σML

)

+ p lnn (9)

Optimal model orders are selected by minimising the in-

formation criteria. The penalty terms in the AIC and BIC,

that which are added to the loglikelihood, depend only on

data length, n, and model order, p. The EIC penalty, on

the other hand, contains data-dependent terms, p lnS and

ln |X′X| and the parameterised prior function, f (p). Despite

the assertion by [10] of asymptotic equivalence of the BIC

and a closed form expression similar to the EIC, we observe

that the data-dependent penalty terms alter the performance

of the criterion significantly for a wide range of model

orders and data lengths. The component of the EIC penalty

that is independent of data and prior choice is given by

−p ln(2π)− 2lnΓ
(

n−p
2

)

− (n− p− 2) ln2 + n(lnn− 1). The

AIC and BIC penalty terms are compared with this data-

independent EIC penalty across model order in Fig. 1 for

n = 100 and n = 10,000. It is evident that the EIC penalises

higher model orders more strongly than the AIC and even the

more stringent BIC. The data-dependent terms in the EIC act
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Fig. 1. The evidence information criterion: Comparison of AIC and BIC
penalty terms with the component of the EIC penalty independent of data
and prior choice, for n = 100 and 10,000.

to increase the penalty at high SNR, as (ln |X′X|− p lnS)> 0,

while at low SNR, the EIC penalty for increased model

orders is reduced by the data-dependent terms. Note that

a similar approach to order selection is followed in [11],

in which the eigenvalues of the data covariance matrix for a

maximally high-order model are examined, with a magnitude

reduction beyond the optimal model order.

A. Model order selection for AR models

Consider the autoregressive model of order p, denoted

AR(p),

zk =
p

∑
i=1

aizk−i + ek, ek ∼ N(0,σ2). (10)

As the parameter vector, a, defines p poles within the unit

circle (stability assumed), the prior is assigned to be

f (p) = (4π)−p, (11)

expressing a uniform distribution over the surface of the

unit circle. A tighter prior can be realised, given that poles

appear in conjugate pairs, however (11) has been found

to be sufficiently constrained. The prior considered in [10]

enforces model stability, but loses a closed form posterior.

We compared the EIC, AIC and BIC, for estimating the

optimal model order of simulated AR data. Data for each true

model order, p = 1, . . . ,8, was generated for 1000 simulation

runs, each with σ2
e = 1 and AR parameters drawn from a

uniform distribution over a disc with inner radius r = 0.950

and outer radius r = 0.999. The restriction to the disc with

poles of large magnitude is necessary for the generated time-

series to take on the characteristics of the true model order.

The results for two time-series lengths, n = 100 and n = 500

are displayed in Fig. 2 with log of the relative frequency

(empirical probability) of the estimated model order against

the true model order. It is evident that the EIC provides the

most accurate model order estimates, particularly noticeable

in the weights on the super-diagonal which for BIC are

significant across all true model orders, but which for EIC are
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Fig. 2. The evidence information criterion: Results for EIC, BIC and AIC
model order selection. True vs estimated model order for length n = 100
and n = 500 AR(p) simulations. Colour denotes the logarithm of relative
frequency.

extremely low at low true model orders. AIC, as expected,

over-estimates the model order.

IV. EVIDENCE OF CORRELATION CHANGE

The second application of the analytic form for BME that

we present here is a test for a change in correlation between

two sets of data. Consider two sets of data, each containing

two time-series of length n, {y1,x1} and {y2,x2}. Corre-

lation is a measure of the strength of the linear Gaussian

relationship between yi and xi, traditionally summarised by

the correlation coefficient, ρxiyi
,

ρxiyi
=

x′iyi
√

x′ixi y′iyi

, i = 1,2. (12)

The standard method by which to test the null hypothesis

that correlation has not changed across the datasets, ρx1y1
=

ρx2y2
, is to use Fisher’s variance stabilising transformation of

the correlation coefficients [7], [8], to convert to z-scores. A

statistically significant rejection of the null hypothesis is de-

termined by a z-score exceeding a chosen significance level,

α, of a zero-mean, unit variance Gaussian distribution [12].

An evidence-based statistical test proceeds differently. The

analytic form for BME permits direct calculation of the

difference between the evidence of two independent linear

Gaussian relationships and the evidence of the same linear

Gaussian relationship. A statistically significant result, sug-

gesting that the linear Gaussian relationships differ between

the two datasets, is determined by the change in evidence

exceeding a given evidence threshold level.

Consider first the calculation of the evidence of two

independent linear Gaussian relationships. For the timeseries

data, the linear Gaussian model matrix, X, is a vector, and

therefore the model order is p = 1, and a ≡ a. Using the

additive property of the BME,

E (y1,x1,MG)+E (y2,x2,MG)

= ln

Z

σ

Z

a
P(y1,x1|a,σ)dadσ

Z

σ

Z

a
P(y2,x2|a,σ)dadσ

= 2lnΓ

(

n−1

2

)

− (n−1) ln(2π)+ (n−3) ln2−2logM

−
1

2
∑

i=1,2

(

ln(x′ixi)− (n−1)ln(y′iyi)− (n−1)ln(1−ρ2
xiyi

)

)

.

(13)

Here we have assumed a uniform prior distribution, P(a) =
1/M, M > 0, where M = amax − amin is the width of the

uniform distribution. The size of M controls the sensitivity-

specificity trade-off, as discussed below in relation to numer-

ical examples.

Consider next the combined time-series vectors, yc =
[y′1,y

′
2]
′ and xc = [x′1,x

′
2]
′, each of length 2n. The evidence

of the same linear Gaussian relationship is given by

E (yc,xc,MG) = lnΓ

(

2n−1

2

)

−
1

2
ln(x′cxc)−

2n−1

2
ln(2π)

+

(

2n−3

2

)

ln2− logM−
2n−1

2
ln(y′cyc)

−
2n−1

2
ln

(

1−ρ2
xcyc

)

. (14)

The evidence of a change in linear relationship is given by

the difference between (14) and (13),

∆E (y1,x1,y2,x2,MG)

= E (y1,x1,MG)+E (y2,x2,MG)−E (yc,xc,MG). (15)

A. Examples of evidence-based correlation test application

We tested the sensitivity and specificity of the evidence-

based test, with M = 1,10,100, for detecting changes in cor-

relation, compared with the Fisher z-transformation test and

a likelihood ratio test. N = 10,000 datasets were generated

under the null hypothesis via sampling of the parameters

a
(i)
1 = a

(i)
2 ∼ U(−1,1), σ

(i)
1 = σ

(i)
2 ∼ U(0,3) and x

(i)
1 ,x

(i)
2 ∼

N(0200, I200), from which the y
(i)
1 and y

(i)
2 were generated,

i = 1, . . . ,N. Similarly, N = 10,000 datasets were generated

under the alternative hypothesis of two distinct linear Gaus-

sian models through sampling a
(i)
1 ,a

(i)
2 ∼U(−1,1),a

(i)
1 6= a

(i)
2 ,

σ
(i)
1 ,σ

(i)
2 ∼ U(0,3),σ

(i)
1 6= σ

(i)
2 , and x

(i)
1 ,x

(i)
2 ∼ N(0200, I200).

From these null- and alternative-hypothesis datasets, true

positive and false positive rates were calculated across a

range of thresholds for the evidence-based, likelihood ra-

tio and z-transformation tests. The results are shown in

the standard receiver-operating-characteristic (ROC) curve

graphical form, which displays true positive rate against false

positive rate (Fig. 3). It is evident from Fig. 3) plots that M

controls the sensitivity-specificity (type I/II error) trade-off;

the marked points correspond to an evidence threshold of

∆E = 0 for each of the three M values.

The evidence-based test clearly outperform the Fisher z-

transformation test; at the marked point indicating an α =
0.05 significance threshold corresponding in the two-tailed
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Fig. 3. Test of correlation change: ROC curve, false vs true positive rates
for simulated data, N = 10,000 datasets generated under each of the null
and alternative hypotheses.

Fisher test to a 90% true positive rate, the false positive rate

of the Fisher test is more than double that of the evidence-

based test. The evidence-based test is also shown in Fig. 3

to slightly outperform the likelihood ratio test. A further

advantage of the evidence-based test over the likelihood ratio

test is that ∆E = 0 provides a natural threshold for declaring

a result in favour of a changed versus unchanged linear

relationship, as ∆E was seen to be predominantly negative

when data generated under the null hypothesis and positive

under the alternative. The (log) likelihood ratio, on the other

hand, was positive for data generated under both the null

and alternative hypotheses, and a subjective threshold must

therefore be chosen to discriminate appropriately between

the two.

The evidence-based test provides meaningful results in

cases where the Fisher test fails. Two sets of correlated

data, {x1,y1} and {x2,y2}, were generated from two dis-

tinct linear Gaussian models, M 1 : (a1 = 5,σ1 = 8) and

M 2 : (a2 = 1,σ2 = 2), with x1,x2 ∼ N(0100, I100). Fig. 4

displays the scatterplots of the two datasets, which clearly

visually indicate two distinct linear relationships. The sample

correlations, however, are ρx1y1
= 0.585 and ρx2y2

= 0.583.

The corresponding Fisher z-score, z = 0.022 equivalently a

p-value of 0.509, indicates no change in correlation between

the two datasets. The change in evidence, calculated for

M = 1, is ∆E = 83.7. A threshold of ∆E = 7 gave a

significance level of 10−4 in Fig. 3, while 5% was achieved

by a threshold of ∆E = 1. Therefore the result of ∆E = 83.7
is an overwhelmingly strong indication of the presence of

two linear relationships, rather than one.

V. CONCLUSIONS

We have applied Bayesian model evidence-based reason-

ing to two fundamental problems in fMRI analysis, that of

order selection for autoregressive models, and inference of

correlation change. The proposed order selection procedure,

based on the evidence information criterion, was shown to
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Model 2: ρ = 0.583

z = 0.022, ∆E = 83.7

Fig. 4. Test of correlation change: Example demonstrating two datasets
with near equal correlation that were drawn from two independent linear
Gaussian models. Fisher test declares acceptance of the null hypothesis of
no correlation change (p = 0.509), while evidence-based test strongly in
favour of two independent linear relationships, with ∆E = 83.7.

outperform AIC and BIC and is particularly well-suited to

moderate sample sizes. Correlation testing, typically per-

formed using Fisher’s transform, was cast in the Bayesian

model evidence framework, a strength of which over its

likelihood ratio counterpart was highlighted in the objective

choice of zero change in evidence as the decision threshold.

Future work will involve the use of increased computational

power to numerically evaluate Bayesian model evidence

expressions outside the linear Gaussian model class that are

currently left to approximation.
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