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Abstract— In this paper the problem of BOLD detection is
addressed. The focus here is on non-negative matrix factoriza-
tion (NMF), which is a data driven method and able to provide
part-based representation of data. A new constrained optimiza-
tion problem is proposed for the purpose of BOLD detection.
The proposed constraint imposes some prior spatial information
of active area inside the brain, on the decomposition process.
The constraint is built up based on the type of stimulus and
available physiological knowledge of the brain performance.
The simulation results on both synthetic and real fMRI data
show that applying the proposed constraint improves the BOLD
detection performance.

I. INTRODUCTION

Functional Magnetic Resonance Imaging (fMRI) is an

imaging technique which provides useful information of

brain functioning. The main goal of fMRI processing

techniques is detecting the blood oxygen level dependent

(BOLD) response as the result of brain activity [1]. Ac-

tivation detection in brain functional imaging experiments

helps to retrieve the neuronal activity as much as possible in

response to cognitive or behavioral stimuli tasks. In general,

fMRI analysis methods are divided into two groups: model-

based techniques and data-based techniques. Model-based

methods need prior knowledge about the activation task-

waveform to work properly. In contrast, data-based methods

which also called model-free do not rely on any assumed

model or prior knowledge. However, exploiting some avail-

able a priori information can improve the performance of

these methods.

The most common model-free methods which are applied

to fMRI data are independent component analysis (ICA)

and non-negative matrix factorization. Both ICA and NMF

decompose a mixture of fMRI data into a set of time courses

and their corresponding spatial sources [2][3]. Extracted time

courses represent the brain temporal response to stimuli or

artifacts. Each time course is related to a source known as

an activated map and represent the activated area in the

brain. Magnus et al. [4] state that a suitable fMRI analysis

technique should provide sparse sources. That means having

a small number of active (non-zero) voxels in each source.

Sparsity is required because the brain networks of interest

such as the motor or the visual cortex typically have sparse

spatial structure [4]. ICA which is one of the fundamental

methods in fMRI analysis, uses statistical moments to find

maximally independent activated maps. ICA is not able to
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extract the sparse sources effectively; mainly due to a number

of zero components which makes higher order averages hard

to handle. However, it provides reliable results.

Non-negative matrix factorization has been applied to

fMRI data during the past few years as an effective tool in

order to detect the BOLD signal [5][6]. NMF decomposes a

given nonnegative matrix into a product of two nonnegative

matrices [7]. The nonnegativity constraint allows only addi-

tive combination, so, it can produce a part-based representa-

tion of data and consequently sparse results. Moreover, NMF

is a flexible method since different constraints can be added.

Prior information about an fMRI experiment can be used as

a constraint on a model-free method to analyze the fMRI

data. Temporal response of the brain to a specific task or

stimulation is one of this prior information. Temporal brain

response can be predicted by convolving the task-waveform

and the hemodynamic response function (HDR) [8]. We use

the predicted temporal response of brain as a constraint for

the factorized time courses by NMF in our previous work [6].

Spatial information about the activated area inside the brain

also can be predicted based on the type of stimulation and

physiological knowledge about the performance of each lobe

of the brain. The use of spatial information as a constraint

for NMF is attractive because NMF has the ability to learn a

part-base representation of all the sources. In this work, we

explore the potential of NMF to take advantage of available

spatial information about the activated areas and improve the

procedure of BOLD detection.

In the next section, fundamentals of NMF are presented.

Then, in section III, the details of the proposed method are

discussed. In section IV, the results of the proposed method

are given. Finally, section V concludes the paper.

II. NON-NEGATIVE MATRIX FACTORIZATION

Suppose that a non-negative observation matrix V∈RM×N

and a positive number K < min(M,N) are available. NMF

seeks a decomposition of V into two non-negative matrices

W ∈ R
M×K and H ∈ R

K×N such that:

Vi j ≃ (WH)i j =
K

∑
k=1

WikHk j (1)

where W contains the basis vectors as its columns and H is

the associated sources. In order to approximate W and H, an

optimization algorithm should be formulated by minimizing

a cost function. One of the widely used cost functions is the

following Euclidean distance:

D(W,H) = ‖V−WH‖2
F , (2)
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where the symbol ‖.‖F represents the Frobenius norm. Lee

and Seung proposed multiplicative update rules [9] which

are driven using traditional gradient descent. The following

equations show the derived update rules for Euclidean dis-

tance function:

W←W⊙ (VHT )⊘ (WHHT )

H←H⊙ (WT V)⊘ (WT WH). (3)

Here, ⊙ and ⊘ represent the element wise matrix multiplica-

tion and division, respectively. It has been proved that under

these update rules the Euclidean distance is monotonically

nonincreasing [9]. In this work the Euclidean distance is

selected as the main cost function. The proposed constraints

are added to the main cost function to incorporate the effect

of prior knowledge about the spatial pattern of activated area.

III. PROPOSED ALGORITHM

The proposed optimization problem uses a decomposition

model which separates the factorization result into two

parts: task related and non-task related. Task-related part

refers to the source and time course of BOLD and non

task-related part refers to the remained sources and time

courses composed of artifacts, transiently task-related and

noise components. In this work, the factorization problem is

defined as follows:

V = WH+wh, (4)

where VM×N contains the observed fMRI data, wh represents

the task-related part and WH represents the non-task related

part. W contains the extracted time courses as its column

and H contains their corresponding sources as rows. Task-

related part includes BOLD time course and the spatial

pattern of BOLD. wM×1 is a column vector representing the

BOLD time course and h1×N is a row vector representing

the activated map of the BOLD.

The proposed constrains are made by the prior knowledge

about the spatial pattern of BOLD which is applied to h using

an approporiate penalty function. D1(h, ĥ) is the penalty term

corresponding to BOLD spatial pattern h:

D1(h, ĥ) = λ
(

‖ h ‖ . ‖ ĥ ‖ −hĥ
T
)

(5)

where ĥ
1×N

is the predicted spatial pattern of the activated

area. As it is seen, the proposed constraint attempts to

maximize the correlation between the learnt h and predicted

spatial pattern. λ is a small positive coefficient that makes

a trade off between the factorization error and the constraint

strength.

The following objective function is achieved by introduc-

ing the constraints:

D =
1

2
‖V−WH−wh‖2

F +λ
(

‖ h ‖ . ‖ ĥ ‖ −hĥ
T
)

(6)

Update rules for W,H,w and h are derived by taking the

gradient of objective function with respect to each one and

using the Karush Kuhn Tucker (KKT) [10] conditions. The

gradients of objective function (6) with respect to all factors

are as follows:

∂D

∂W
=−VHT +WHHT +whHT (7)

∂D

∂w
=−VhT +WHhT +whhT (8)

∂D

∂H
=−WT V+WT WH+WT wh (9)

∂D

∂h
=−wT V+wT WH+wT wh+λ

(

h

‖ h ‖
. ‖ ĥ ‖ −ĥ

)

(10)

Based on the KKT conditions the multiplicative update rules

are obtained as:

W←W⊙
VHT

WHHT +whHT
(11)

w← w⊙
VhT

WHhT +whhT
(12)

H←H⊙
WT V

WT WH+WT wh
(13)

h← h⊙
wT V+λ ĥ

wT WH+wT wh+λ h
‖h‖‖ĥ‖

. (14)

All matrices and vectors are calculated by iteratively updat-

ing the above rules until achieving an acceptable error. The

initial value is an important issue for non-negative matrix

factorization as it influences the convergence of algorithm.

Using the proper initial value for all factors helps to avoid

being trapped in any local minima. In this work, we applied

the multi-initialization method to find the best initial value.

As mentioned before, λ should balance the trade off

between the constraint and factorization error. In this work

we proposed a simple rule to update the value of λ as

follows:

λ ← λ +µ.

(

1−
hĥ

T

‖ h ‖ . ‖ ĥ ‖

)

(15)

where µ is a very small positive value selected as 0.05. In

order to obtain the best regularization parameter (λ ), the

above rule is updated until reaching an acceptable normalized

correlation between the source of interest h and spatial

constraint ĥ. The normalized correlation which has been used

as a threshold was set to 0.5.

IV. RESULTS

In this section the performance of the proposed algorithm

is evaluated. The proposed algorithm is examined using two

different datasets consisting of synthetic and real fMRI.
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A. Experimental Results with Synthetic Data

The simulated data which are used in this work has been

provided by Machine Learning for Signal Processing labora-

tory [11]. The statistical properties of the fMRI sources are

used as the basic knowledge for producing this dataset. This

dataset consists of two matrices, one containing 8 simulated

fMRI sources and the other containing their corresponding

time courses (Figure 1). The mixture matrix is obtained by

multiplying these two matrices. Generally, there are two main

groups of fMRI sources: those that are related to performing

a task by the subject, and the sources which are related

to artifacts. S1 shows the task-related simulated source, S2

and S6 are transient task-related, and the rest are the artifact

related simulated sources.

In the first part of the experiments, we applied the pro-

posed method to the synthetic mixture. Figure 2 shows the

spatial constraint, which is vectorized to ĥ. The proposed

algorithm was applied to the simulated fMRI data for several

times and with different noise levels added to the mixture.

Based on the experiments, the optimum value of λ obtained

for the case of no noise, SNR = 5dB and SNR = 15dB

are 0.11, 0.15 and 0.15, respectively. Table I shows the

computed SIR value for the reconstructed source of interest

(s1) and different levels of noise. The Signal-to-Interference-

Ratio (SIR) and Signal-to-Noise-Ratio (SNR) were computed

based on the following definitions:

SIRh = 20log
‖h‖2

∥

∥h− ĥ
∥

∥

2

(16)

SNR = 20log
‖V‖2

‖N‖2

, (17)

where NM×N is a matrix representing the random Gaussian

noise which is added to the mixture. As can be seen from

the table, the SIR value in the proposed method is higher

(almost double) compared to the unconstrained case. This
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Fig. 1. Simulated fMRI data; (a) source image and (b) their
corresponding time courses.
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Fig. 2. Spatial constraint for the simulated data.
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Fig. 3. Extracted active map and its time course using unconstrained
NMF for SNR = 5dB.
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Fig. 4. Extracted active map and its time course using proposed
constrained method for SNR = 5dB.

TABLE I

AVERAGE SIR VALUES FOR DIFFERENT EXPERIMENTS.

Noise level
SIR(dB)

unconstrained proposed method

noiseless 1.6564 3.4091

SNR=15dB 1.4343 2.6020

SNR=5dB 1.0226 2.1247

improvement is robust against different noise levels as it

is reflected in the table. The results of unconstrained and

constrained source separation approaches for SNR = 5dB

are shown in Figures 3 and 4. Comparing the extracted

simulated BOLD in these figures, reveals the ability of the

proposed constraint to effectively take advantages of sparse

part-based representation feature of NMF. Correspondingly,

the extracted time-course as a result of the proposed method

is more correlated with the actual square wave given in

Figure 1.

B. Experimental Results on Real fMRI Data

The real fMRI dataset used to evaluate the proposed

algorithm was taken from the SPM website [12]. This dataset

has obtained in an auditory fMRI experiment from a single

subject. It comprises the whole brain and was acquired by

a 2T Siemens MAGNETOM Vision scanner and the scan to

scan repeat time (TR) is 7seconds. The Auditory stimulus

is bi-syllabic words presented binaurally at a rate of 60

per minute. The dataset contains 96 scans and each scan

consists of 64 contiguous slices (64× 64× 64,3× 3mm×
3mm3voxels).

As it was mentioned before the spatial constraint is de-

signed based on the knowledge about the type of stimula-

tion. We constructed the spatial constraint using the WFU-

PickAtlas toolbox [13] . As the stimulation does not involve

any high level of auditory processing, the “primary auditory
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cortex” and “superior temporal gyrus” are considered as the

regions activated due to hearing the words.

In order to evaluate the performance of the proposed

method and finding the voxels contributing to the activa-

tion process, the estimated task-related source (h) using

the proposed method, was scored to z-score [14]. After a

proper thresholding, the activated region is obtained. Figure

5 represents the activated area and its corresponding time

course obtained using the proposed method. To determine

the value of parameter λ for real data and examine the

convergence of the proposed method, we ran the algorithm

70 times. The results of experiments show that the parameter

λ converges to a value in the range of [0.11 0.12] according

to equation (15). The number of sources existing in this

dataset was estimated by minimum description length (MDL)

method [15] as 35 sources. However, we set K = 34 as the

total number of non task-related sources, and one remaining

source indicating the source of interest (h). The normalized

correlation between the estimated BOLD time course (w)
and the expected BOLD time course was calculated to

compare the performance of the algorithm. The expected

BOLD time course is obtained by convolving the HDR and

task-wave form of the fMRI experiment [8]. Our experiments

show that the normalized correlation between the estimated

BOLD time course (w) and the expected BOLD time course

has the maximum value of 0.9123. This correlation value

is 0.8584 for the case of unconstrained separation, which is

smaller.

Finally, we compared the results of the proposed method

to the results of SPM which is a benchmark in this field.

The SPM results are shown in Figure 6. It is found from the

figures 5 and 6 the detected active region using the proposed

method matches the results of SPM, which confirms the

correctness of the result of the proposed method.
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Fig. 5. Results of the proposed method: (a) Active area in auditory
region, and (b) its corresponding time course.
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Fig. 6. SPM result for the same real data set.

V. CONCLUSIONS

In this paper a constrained NMF technique was proposed

to detect the task-related component in fMRI. The aim of

applying the proposed constraint is to use the additional

available physiologic information related to the stimuli of

interest. Using such a constraint on the sources within NMF

factorization algorithm allows us to benefit more from the

part-based representation property of NMF. The extensive

simulation results confirm the ability of the proposed method

to correctly detect the activated area. However, the results of

the proposed method is strongly affected by the accuracy

of prior information or constraint. This drawback restrict

the performance of the algorithm specially in cases which

there is no information about the time course of BOLD

to evaluate the results. Improving the performance of the

spatially constrained NMF in terms of developing some

methods to provide more accurate spatial constraint is the

most important aim in our future work.
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