
  

  

Abstract— An Alzheimer’s fMRI study has motivated us to 
evaluate inter-regional correlations between groups.  The 
overall objective is to assess inter-regional correlations at a 
resting-state with no stimulus or task.  We propose using a 
generalized estimating equation (GEE) transition model and a 
GEE marginal model to model the within-subject correlation 
for each region.  Residuals calculated from the GEE models are 
used to correlate brain regions and assess between group 
differences.  The standard pooling approach of group averages 
of the Fisher-z transformation assuming temporal 
independence is a typical approach used to compare group 
correlations. The GEE approaches and standard Fisher-z 
pooling approach are demonstrated with an Alzheimer’s 
disease (AD) connectivity study in a population of AD subjects 
and healthy control subjects.  We also compare these methods 
using simulation studies and show that the transition model 
may have better statistical properties. 

I. INTRODUCTION 
A noninvasive neuroimaging technique for the study of brain 
function is functional magnetic resonance imaging (fMRI).  
fMRI data are measured with the ratio of the oxygenated to 
deoxygenated blood, referred to as the blood oxygen level 
dependent (BOLD) contrast effect [1].  The fMRI data are 
represented as a series of a % signal change.  Although 
images are taken every few seconds, the BOLD response is 
slow, followed by a short delay where the response has a 
gradual increase to the peak and decreases back to baseline 
[2].  The duration of the BOLD response is much longer 
than the acquisition time of the fMRI scans causing the 
scans to be correlated. Therefore, as others have suggested 
we treat the fMRI scans as statistical time-series data [1, 3-
7].  A recent area of interest that has emerged from fMRI 
studies is resting-state connectivity.  Here, the overall goal is 
to determine inter-regional correlations during a resting-state 
with no stimulus or task.   

It is common to compare connectivity between groups by 
calculating the Pearson correlation between the regions for 
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each subject.  The Pearson correlation coefficients are 
transformed to a Fisher-z, followed by taking a group 
average of the Fisher-z transformation, and lastly doing an 
unpaired t-test of the group averages.  We refer to this 
approach as the standard pooling Fisher-z method.  A 
drawback of this approach is that is does not address the 
temporal correlation in the time-series and the correlations 
between regions can be inflated as a result.  Hence, we 
suggest a two-stage approach that uses the generalized 
estimating equations (GEE) to handle the temporal 
dependence through a modeling strategy and then use these 
GEE residuals to calculate correlations.   

Some progress has been made at modeling the temporal 
dependence of fMRI data [4-7].  However, not much 
progress has been made on modeling temporal dependence 
when determining group differences of resting-state 
connectivity. In addition, much of the general time-series 
literature has focused on a single time-series analysis.  This 
is a limitation when the focus is on the analysis of multiple 
subjects. We are interested in modeling n individuals’ time-
series to assess between-group comparisons of regional 
associations.    

For this manuscript, we propose a two-stage approach 
with GEE to estimate brain regional associations and assess 
between group differences while accounting for the temporal 
dependence in the individual time-series [8]. We evaluate 
both GEE marginal and GEE transition models.  Marginal 
models estimate the regression and correlation structure 
separately.  Transition models estimate the expectation of 
the current value conditional on the previous values.  We 
investigate the properties of these GEE models and compare 
them to the standard pooling Fisher-z method, using an 
Alzheimer’s disease (AD) functional connectivity study and 
simulation studies. 

II. DATA AND FUNCTIONAL CONNECTIVITY 
Our data consist of a study cohort with 20 healthy normal 
subjects and 14 AD subjects that were recruited from the 
Washington University Alzheimer’s Disease Research 
Center (ADRC).  Fourteen subjects with very mild dementia 
of the Alzheimer’s type (DAT) with clinical dementia rating 
(CDR) scores 0.5-1 were compared with 20 normal age 
matched controls with no brain amyloid (PIB-) deposition. 
All subjects were part of ongoing longitudinal studies at the 
Washington University ADRC.  fMRI BOLD datasets were 
collected while subjects fixated on a cross-hair.  The fMRI 
data were transformed to a common atlas space, corrected 
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for head motion, and blurred with a 6 mm full-width half-
maximum Gaussian filter. The BOLD volumetric time-series 
were preprocessed with the previously mentioned steps 
including temporal filtering.  Furthermore, noise was 
removed by regression of several nuisance variables, 
including the signal averaged over the whole brain and head 
motion parameters [9]. Summary statistics for age, MMSE, 
gender, and education are reported in Table 1.  Two seed 
regions were selected that are among regions affected early 
in the course of AD: dorsolateral prefrontal cortex (DLPFC) 
(-36, 27, 29) and precuneus (-2, -66, 39).  These are 
characterized by high levels of atrophy, hypometabolism, 
and amyloid deposition.  The data were initially analyzed 
using the standard Fisher-z approach using the seed regions 
and regions of interest (ROI) selected. The seed regions each 
have a diameter of 12 mm (coordinates in Talairach space) 
[10].  By this approach, three ROIs identified to have 
correlation differences between AD and controls with 
DLPFC were lateral parietal cortex (-44,-64,43), left 
hippocampus (25,-34,-21), and right hippocampus (-21,-31,  
-17).  The ROIs that had correlation differences between AD 
and controls with the precuneus seed region were right 
pregenual anterior cingulate (AC) (6,41,20), right anterior 
prefrontal cortex (25,58,12), medial frontal cortex (BA 8) 
(4,24,48), and right visual cortex (17, -71, -10).  In our 
analysis we compare the GEE approaches to the standard 
pooling approach using the same seeds and ROIs. 

III. NOTATION AND METHODOLOGY 
We denote the regions to be Zqi=(Zqi1,.., ZqiJ) where q=1,..,P 
denotes the seed region and its (P-1) ROIs, i=1,..,n denotes 
the ith subject, and j=1,..,J denotes the jth fMRI 
measurement. Our objective is to test for a group difference 
in the relationship between multiple ROIs Zq and the seed 
region Z1, where q>1.  This will be determined via (P-1) 
pairwise correlations between the (q-1)th target region Zq 
and seed region Z1, where q>1.     

GEE [8,11,12] methods have been developed to handle 
correlated data using an estimating equation that does not 
result from a likelihood-based derivation as general linear 
models (GLM) do. A quasi-likelihood [13] specifies only the 
mean and variance.  The quasi-likelihood uses the following 
estimating equation to estimate the parameters [8, 11]:   
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where q=1,..,P, ( ) ' ,qi qi iE= =μ Z β W  Wi are covariates, 
1/2 1/2( )qi qi qi qiVar =Z A R A , Rqi=Corr(Zqi), and Aqi=diag(uqi1,.., 

uqiJ).  We use the Geepack library [14] from the R software 
to estimate the GEE parameters.        
 As previously mentioned we propose using two 
approaches, the GEE marginal model and the GEE transition 
model.  For a GEE marginal model [8], the marginal 
expectation of Zq is characterized as a function of 
explanatory factors where E(Zqij|Wij)=β’Wij.  The regression 
of the outcome on the covariates and the dependence 

structure are modeled separately [8].  Marginal models are 
designed to estimate population average parameters where 
the objective is to compare groups of subjects among a 
population.  In a transition model [8] the current value of the 
outcome is influenced by its previous values where E(Zqij| 
Wij, Zqij-1,.., Zqij-K)=β’(Wij, Zqij-1,.., Zqij-K).   The dependence 
on the past K values will be referred to as lag K. If the 
specification of the conditional mean of Zq is correct, then 
the repeated transitions can be treated as independent data 
and standard statistical methods such as GLM can be used.  
If the specification is incorrect, then other measures need to 
be utilized such as using the GEE [8], by specifying an 
additional correlation structure that may not be captured by 
the specified lag in the transition model.  The idea is that the 
influence of the past values can be removed when adjusted 
for in the transition model.  Additional details for these GEE 
methods are provided in Diggle et al. [8]. 
 In this work we use both models for each region.  With 
the marginal model we consider both exchangeable and 
autoregressive with lag 1 correlations.  For the transition 
model we consider both independence and exchangeable 
correlations along with lags 1-5.  In all models we also 
adjust for time and group. The within-subject correlation has 
been accounted for by the GEE.  The residuals from these q 
GEE models are then used in the correlation analysis.  The 
Pearson correlation between the residuals of the seed region 
and its target region is calculated for each subject.  Then the 
correlation for each subject is transformed to a Fisher-z and 
a group average of the Fisher-z transformation is calculated. 
Lastly, we calculate an unpaired t-test of the group average 
to compare connectivity differences between AD and 
healthy controls.  We employ this two-stage procedure for 
all regions.   

IV. DATA ANALYSIS EXAMPLE 
The AD dataset of 20 controls and 14 AD subjects is used 
for a data analysis example.  Each region has 164 BOLD 
measures per scanning session with two scanning sessions.  
We exclude the first 4 frames to remove the effect of the 
magnet initialization.  We compare a total of 13 approaches: 
GEE marginal models with exchangeable or AR(1) 
correlation, GEE transition models with lags 1-5 and 
independence or  exchangeable correlation, and the standard 
pooling Fisher-z method.  In all analyses the GEE marginal 
results are very similar for the AR(1) and exchangeable 
correlations; therefore, we present just the results for the 
AR(1).  Also, in all analyses the GEE transition model 
results are very similar across both correlation structures; 
therefore, we just present results for the independence 
correlation.  Results of the transition model are only reported 
for lag <=3 since the results are similar for lag>3, where the 
significance findings stay the same as the magnitude of 
connectivity differences are maintained.  We do not correct 
for multiple testing and a p-value<.05 is considered 
significant.  The analyses are based only on the first 
scanning session; therefore, the results may differ from those 
reported in Section II.   

Table 2 reports functional connectivity difference results 
between DLPFC and its target regions: lateral parietal 
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cortex, left hippocampus, and right hippocampus (not 
shown). For all regions, the GEE marginal model yields 
similar results to the standard pooling approach.  We suspect 
this is due to the lag not being accounted for in the marginal 
model.  The results for the transition model differ when 
compared to the GEE marginal model and standard pooling 
approach.  In general for the transition model, the 
connectivity differences are smaller and variances increase 
except for the right hippocampus where the differences 
become larger and standard errors decrease.  In addition, the 
findings for the group connectivity differences for lateral 
parietal and right hippocampus are different with the 
transition model compared to the other approaches.   For 
lateral parietal, as the lag increases for the transition models 
the connectivity differences decrease, along with an 
increased standard error, resulting in nonsignificant 
differences.  With the standard pooling and GEE marginal 
approach, the group connectivity differences of lateral 
parietal and DLPFC are found to be significant.  Based on 
the standard pooling and GEE marginal approach, group 
differences of the correlation between DLPFC and right 
hippocampus are not statistically significant. The group 
difference of the functional connectivity between DLPFC 
and the right hippocampus become larger as the lag of the 
transition model increases and the difference becomes 
significant for all lags. The results for the left hippocampus 
and DLPFC are the same for all approaches except that the 
connectivity differences are smaller for the transition 
models.   
 Next, we discuss results for precuneus as the seed region 
and right pregenual AC, right anterior prefrontal cortex (not 
shown), medial frontal cortex (not shown), and right visual 
cortex as the target ROIs (Table 3).  The results across all 
methods are quite similar for right anterior prefrontal cortex 
and medial frontal cortex. There is a suggested trend of the 
connectivity between precuneus and right anterior prefrontal 
cortex being larger for the controls than the AD group.  
There is no statistical difference of connectivity between 
precuneus and medial frontal cortex.  The transition models 
for precuneus and right pregenual AC indicate that 
connectivity differences are slightly larger (although not 
significant) for AD than the control groups as opposed to the 
opposite direction found with the other approaches.  For 
right visual cortex, the connectivity differences are larger 
when using the standard pooling and GEE marginal models, 
yielding significant results, whereas with the transition 
model, the connectivity difference for visual cortex and 
precuneus is not significant and differences are smaller than 
with other methods.  
 Previous values will most likely be related to the current 
values, but most likely related to values closest to them. 
When removing this influence, the correlations and 
differences may no longer reflect these temporal 
dependencies that are not of primary interest.  The 
magnitude of the differences in functional correlations may 
be affected when accounting for the lag of resting-state 
fMRI data.  A majority of the time the difference is either 
the same or decreases when comparing the transition 

approach to the other approaches, and in one instance the 
difference is larger.  About half the time the inference results 
differ for the transition model from the GEE marginal model 
and standard pooling approach.  These findings suggest that 
the lag should be considered in functional connectivity 
analysis.  Also, the GEE model seems robust to the 
correlation structure.       

V. SIMULATION STUDIES 
We perform a number of small simulation studies to let us 
evaluate some statistical properties of the various 
approaches. We compare six approaches: the standard 
Fisher-z, GEE marginal model with AR(1) correlation, GEE 
transition models with lags 1-3 and the correct function of 
time with an exchangeable correlation, and a GEE transition 
model with lag 1 and incorrect function of time with an 
exchangeable correlation. The bias and root mean squared 
error (MSE) of the difference between the group average 
Fisher-z estimates, (τ1-τ0), are calculated where 
τg=.5ln[(1+ρg)/ (1-ρg)] and g=(0,1). 
 Our data generation consists of j=1,..,200 time-points per 
subject, two groups denoted as g=(0,1), lag 1, and total 
number of subjects to be n=60 with equal numbers in each 
group. We generate two variables (Z1, Z2) to be (Z1, 
Z2)~BVN(μ, Σg) where μ=( μ1, μ2) ,  
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Σg is the covariance matrix for the corresponding group with 
variances being 1 and the correlations denoted by ρg.   In the 
simulation studies we let the lag parameters have the same 
value of (b1=-.85, b2=-.8) for group 0, (b1=-.75, b2=-.7) for 
group 1, the amplitude be A=5, the frequency of oscillations 
be ω=1/20, the phase shift be φ=.6π, and generate 200 
replications for each study. For these simulations we assume 
the frequency is known and do not estimate it during the 
estimation process of GEE.  We consider the correlation 
values: (ρ0=.05, ρ1=.1) and (τ1-τ0)=.05; (ρ0=.1, ρ1=.2) and (τ1-
τ0)=.1 ; and (ρ0=.05, ρ1=.35) and (τ1-τ0)=.32.  The following 
are the conditional expectations specified for each model.  
The GEE marginal model is  
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The transition models with the correct function of time are:   
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where K specifies the lag.  The transition model with the 
incorrect function of time and lag of 1 is:  

 ( 1) 0 1 2 3 ( 1)( | , ) .qij ij qi j qi jE z w z j g zβ β β β− −= + + +  (5)  
 Results are reported in Table 4.  The transition model with 
lag 3 performs the same as the models with lags 1-2, 
therefore we just present results for lags 1-2. The pooled 
approach is the most biased and has the largest MSE.  This is 
due to not accounting for the lag and possibly not modeling 
time.  The transition models with correct function of time all 
have small bias and small MSE.  The marginal model 
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performs almost as well as the transition models when time 
is modeled correctly.  The transition model with lag 1 and 
incorrect model of time has more bias and larger MSE than 
the other GEE approaches but still has smaller bias and MSE 
than the standard approach.  As connectivity differences 
increase, the pooled approach and transition model with 
incorrect function of time result in a smaller bias and smaller 
MSE.  These results suggest that the transition model may 
contribute to our understanding of regional correlations.  
However, we need to investigate our simulation 
specifications further to provide additional understanding of 
the GEE approaches. 

VI. CONCLUSION   
This work demonstrated application of GEE approaches to 
resting-state fMRI data.  In particular, we evaluated the 
potential utility of the transition model to analyze functional 
connectivity data.  Based on the AD example, we have 
shown that functional connectivity group differences will 
vary according to the method selected.  The transition model 
did result in less connectivity difference findings.  The 
simulation studies also suggested that the transition model 
may have better statistical properties. Advantages of the 
GEE are that it is only necessary to specify the first two 
moments and not necessary to specify the distribution of the 
dependent variable.  A disadvantage of the GEE is the 
working correlation has to be specified.  Additional 
simulation studies are being designed to further evaluate 
properties of the GEE methods for resting-state fMRI data.  
GEE methods hold promise in the functional connectivity 
area as they are ideally suited for modeling time-series data 
and are flexible by having the ability to adjust for covariates.        
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Table 2 : DLPFC 
Lateral Parietal Conn diff* (SE) p-value 
  Stand Pool Fisher-Z -0.258 (0.105)  0.020 
  GEE marginal AR(1) -0.258 (0.105) 0.020 
  GEE transition ind lag 1 -0.222 (0.098) 0.031 
  GEE transition ind lag 2 -0.175 (0.114) 0.135 
  GEE transition ind lag 3 -0.179 (0.114) 0.125 
Left hippocampus   
  Stand Pool Fisher-Z -.270 (0.063) <0.001 
  GEE marginal AR(1) -.270 (0.063) <0.001 
  GEE transition ind lag 1 -.181 (0.064) 0.008 
  GEE transition ind lag 2 -.192 (0.071) 0.011 
 GEE transition ind lag 3 -.190 (0.071) 0.012 
*Conn diff : differences between group average Fisher-z 
 
Table 3: Precuneus 
R Pregenual AC Conn diff* (SE) p-value 
  Stand Pool Fisher-Z -0.036 (0.090) 0.693 
  GEE marginal AR(1) -0.035 (0.090) 0.697 
  GEE transition ind lag 1 0.014 (0.082) 0.863 
  GEE transition ind lag 2 0.031 (0.092)  0.736 
  GEE transition ind lag 3 0.025 (0.094) 0.793 
R Visual Cortex   
  Stand Pool Fisher-Z 0.166 (0.066) 0.018 
  GEE marginal AR(1) 0.165 (0.066) 0.019 
  GEE transition ind lag 1 0.091 (0.055) 0.105 
  GEE transition ind lag 2 0.075 (0.062) 0.234 
 GEE transition ind lag 3 0.070 (0.063) 0.271 
*Conn diff : differences between group average Fisher-z 
 
Table 4: Simulations of connectivity group differences 
  GEE Transition (K=lag) 
 Pool ar(1) K=1 K=2 K=1*

τ1 - τ0=.05      
  Bias 0.166  -0.003   0 0 .121 
 √MSE  0.168  0.036  .018  .018  .125 
τ1 - τ0=.10      
  Bias .148  -.003     0     0 .106 
  √MSE .15  .036  .018  .018  .11 
τ1 - τ0=.32      
  Bias .085  -.004 -.001  -.001 .062 
  √MSE .089  .036 .018 .018 .069 
* incorrect function of time  

Table 1: Demographic summary statistics 
 Total 

(n=34) 
Healthy 
(n=20) 

AD 
(n=14) 

p-value 

Male* 14 (41.2) 8 (40.0) 6 (42.9) 1.000 
Age** 73.9 (6.8) 72.7 (6.0) 75.6 (7.6) 0.255 
MMSE** 27.1 (3.6) 29.2 (0.9) 24.2 (4.0) <0.001 
Educ** 14.4 (2.9) 14.6 (2.9) 14.3 (3.1) 0.712 
*  n (%), ** mean (SD), educ=education 
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