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Abstract— Lower back pain is widely prevalent in the world
today, and the situation is aggravated due to a shortage
of radiologists. Intervertebral disc disorders like desiccation,
degeneration and herniation are some of the major causes of
lower back pain. In this paper, we propose a robust computer-
aided herniation diagnosis system for lumbar MRI by first
extracting an approximate Region Of Interest (ROI) for each
disc and then using a combination of viable features to produce
a highly accurate classifier. We describe the extraction of
raw, LBP (Local Binary Patterns), Gabor, GLCM (Gray-Level
Co-occurrence Matrix), shape, and intensity features from
lumbar SPIR T2-weighted MRI and also present a thorough
performance comparison of individual and combined features.
We perform 5-fold cross validation experiments on 35 cases and
report a very high accuracy of 98.29% using a combination of
features. Also, combining the desired features and reducing the
dimensionality using LDA, we achieve a high sensitivity (true
positive rate) of 98.11%.

I. INTRODUCTION

According to the American Academy of Orthopedic Sur-

geons (AAOS), four out of five adults experience lower back

pain at some point during their lives and many of them have

common intervertebral disc disorders.

Fig. 1. This figure shows a labeled portion of spine on the left and a
magnified view of intervertebral disc herniation on the right.

Intervertebral discs are soft, rubbery pads found between

the vertebrae of the spinal column that provide body flexi-

bility. Discs in the lumbar spine (lower-back) are composed

of a thick outer ring of cartilage (annulus) and an inner

gel-like substance (nucleus) as shown in Fig. 1. A disc

herniates when part of the nucleus pushes through the outer

edge of the disc and back toward the spinal canal due to

Subarna Ghosh, Raja’ S. Alomari and Vipin Chaudhary are affiliated to
the Department of Computer Science and Engineering, State University of
New York at Buffalo, NY 14260, USA.

Gurmeet Dhillon(MD) is a Radiologist with ProScan Imaging Inc.,
Williamsville, NY 14221, USA.

severe trauma, strain or intervertebral joint degeneration.

This puts pressure on the nerves leading to pain and change

of posture. Statistics show that one-third of adults over the

age of 20 show evidence of herniated discs [1] and 90%
of herniation occurs in the lumbar and lumbosacral regions

of the spine [2]; hence we are motivated to develop a robust

and highly accurate system for automatic diagnosis of lumbar

disc herniation from lumbar MRI which can not only provide

quick screening for patients, but might also detect cases that

a radiologist missed due to lack of time [3].

II. PREVIOUS WORK

Automatic detection of abnormalities from MRI or CT

scans has been an active research area over this last decade.

The challenges are manifold - ranging from variations in

scanner specifications, parameter settings, modalities, differ-

ences in body structure and composition, and last but not

the least the task of segmentation which is a big challenge in

computer vision. Chwialkowski et al. [4] presented a method

to detect lumbar pathologies in MR images by first localizing

candidate vertebrae with an estimated vertebrae model and

then studying the change in gray level intensities in healthy

and damaged discs. Tsai et al. [5] detects herniation from

3D MRI and CT volumes of the discs by using geometric

features like shape, size and location. Michopoulou et al. [6]

achieved 86-88% accuracy for normal vs. degenerated disc

classification. The used fuzzy-c means to perform semi-

automatic atlas-based disc segmentation and then used a

Bayesian clssifier. They also reported 94% accuracy us-

ing texture features [7] for 50 manually segmented discs.

Alomari et al. [8] presented a fully automated herniation

detection system using GVF snake for an initial disc con-

tour and then trained a Bayesian classifier on the resulting

shape features. They achieve 92.5% accuracy on 65 clinical

MRI cases but a low sensitivity of 86.4%. In our previous

work [9], we have used heterogeneous classifiers to achieve

an accuracy of 94.85% and sensitivity of 92.45% on 35 cases

in a fully automated scheme.

III. OUR APPROACH

A. MRI Dataset Used

T2-SPIR Sagittal images from lumbar MRI scans are used

for our experiments. They are acquired using a 3 Tesla

Philips scanner in clinical settings. Thirty-five anonymized

cases are selected such that each case has one or more

herniated lumbar disc. Otherwise, they are random with

respect to age, sex, symptoms and other lumbar disorders.

Radiologist’s reports are treated as the ground truth. We use
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80% of the dataset (i.e. 140 discs) for training and the rest

for testing in 5-fold cross-validation experiments.

B. Automatic disc ROI extraction

We use a probabilistic model for automatic localization

and labeling of the discs [10] from each mid-sagittal slice

which results in a point inside each disc. We use the label

point inside each disc as the initial starting point for our

Active Shape Model [11] based segmentation as shown in

Fig. 2. Using the ASM boundary we construct an approx-

imate ROI for each disc by adding a few pixels in height

and width to the tight bounding box of the disc. This takes

care of the cases where ASM does not provide a satisfactory

segmentation.

Fig. 2. This figure shows the process of disc ROI extraction starting from

labeling each disc in the sagittal MRI, using the label point as the starting
point of ASM and finally extracting a bounding box of the disc.

C. Feature extraction

Literature survey shows that there has not been compre-

hensive work done on the comparison of feature performance

for automatic herniation detection in lumbar MRI scans.

Hence we focus on the extraction of various discriminative

features like raw, LBP(Local Binary Patterns), Gabor, GLCM

(gray-level co-occurrence matrix), intensity and shape fea-

tures to study their individual and combined performances.

The first three features (Raw, LBP and Gabor) gives us values

at each pixel of the disc ROI, hence we resize the each

disc image into a 20x50 block to maintain a constant feature

vector length.

1) Raw Features: Raw features are the original pixel

intensity information in the disc ROI, vectorized to create

the raw feature vector of length 1000.

2) Local Binary Patterns: LBP or Local Binary Patterns

are a type of feature commonly used for texture classifica-

tion. For an image I the pixel-wise LBP is defined as:

LBP (x, y) =
7
∑

i=0

s (Ii(x, y) − I(x, y)) .2i (1)

such that: s(x) =

{

1, if x ≥ 0

0, otherwise
(2)

Here I(x, y) is the center pixel and Ii(x, y) denotes each of

the eight neighboring pixels.

3) Gabor Features: Gabor features are extracted by con-

volving Gabor filters with the sample images. In the spatial

domain, a 2D Gabor filter is a Gaussian kernel function

modulated by a sinusoidal plane wave as:

gb(x, y) = exp

(

−
x

′

+ γ2y
′
2

2σ2

)

exp

(

i(2π
x

′

λ
+ ψ)

)

(3)

where

x
′

= xcosθ + ysinθ (4)

y
′

= −xsinθ + ycosθ (5)

Here, λ represents the wavelength of the sinusoidal factor, θ
represents the orientation of the normal to the parallel stripes

of a Gabor function, ψ is the phase offset, σ is the variance

of the Gaussian envelope, and γ is the spatial aspect ratio.

γ also specifies the ellipticity of the support of the Gabor

function.

Fig. 3. Gabor filter bank used for Normalized Gabor feature.

For our experiments, we create a filter bank of eight Gabor

filters with a constant scale of λ = 3 and eight orientations

(θ = [0 : pi/8 : 7 ∗ pi/8]) as shown in Fig. 3. For each disc,

we calculate the L2-norm of the superimposed responses

which are vectorized to give the Gabor feature vector of

length 1000.

4) GLCM features: We create the GLCM feature vector

exactly as discussed in our previous work [9].

5) Intensity and Shape features: We calculate the intensity

and shape features as discussed in [9] and concatenate them

to form the final feature vector.

D. Dimensionality Reduction and Classification

We use two popular dimensionality reduction techniques:

Principal Components Analysis (PCA) and Linear Discrimi-

nant Analysis (LDA) in our experiments. On one hand, PCA

preserves as much of the variance in the high dimensional

space as possible. On the other hand, LDA preserves as much

of the class discriminatory information as possible. In our

experiments, the within class scatter matrix is often singular

and not full rank, so, we first reduce the dimensionality

by PCA and then apply LDA. Also, LDA reduces the

dimensionality to k dimensions, such that k = n− 1, where

n is the number of classes. For our problem, we deal with 2
classes: herniated (positive class) and non-herniated (negative

class) disc and hence k = 1.

We use three popular classifiers for herniation detection:

k-Nearest Neighbor (kNN), linear Support Vector Machine

(SVM) [12] and Naive Bayes Classifier. For kNN we empir-

ically fix k as 5.

IV. EXPERIMENTS AND RESULTS

We divide our 35 cases into 5 non-overlapping folds, each

consisting of 5 cases i.e. 7 ∗ 5 = 35 lumbar discs to perform

5-fold cross validation experiments. Thus, we ensure that

the testing and training datasets are always distinct. Tables I

and II show the performance results of the individual features

(Section III-C). For each row entry in the tables, the classifier
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TABLE I

PERFORMANCE OF RAW, LBP AND GABOR FEATURES (5-FOLD CROSS VALIDATION)

Classifier
Raw Features LBP Features Gabor Features

Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity

PCA64+5NN 94.29 97.54 86.79 69.71 100 0 86.29 92.62 71.70

PCA64+SVM 79.43 86.07 64.15 84 86.89 77.36 90.28 90.98 88.68

PCA64+Bayes 95.43 95.90 94.34 91.43 91.80 90.57 91.43 90.98 92.45

PCA64+LDA+5NN 96.0 96.72 94.34 93.14 92.62 94.62 83.43 79.51 92.45

PCA64+LDA+SVM 88.57 85.25 96.23 85.71 80.33 98.11 92 94.26 86.79

PCA64+LDA+Bayes 97.71 99.18 94.34 94.86 95.90 92.45 91.43 93.44 86.79

TABLE II

PERFORMANCE OF GLCM AND SHAPE+INTENSITY FEATURES IN PERCENTAGE (5-FOLD CROSS VALIDATION)

GLCM Features Shape+Intensity Features

Classifier Accuracy Specificity Sensitivity Classifier Accuracy Specificity Sensitivity

PCA8+5NN 74.86 87.70 45.28 PCA32+5NN 75.43 92.62 35.85

PCA8+SVM 81.14 88.58 64.15 PCA32+SVM 90.28 92.62 84.91

PCA8+Bayes 84.0 81.15 90.57 PCA32+Bayes 94.29 95.08 92.45

PCA8+LDA+5NN 84 86.89 77.36 PCA32+LDA+5NN 93.14 94.26 90.57

PCA8+LDA+SVM 69.71 100 0 PCA32+LDA+SVM 88.0 98.36 64.15

PCA8+LDA+Bayes 85.71 85.25 86.79 PCA32+LDA+Bayes 94.86 96.72 90.57

column can be explained as the dimensionality reduction

method followed by the reduced dimension and then the type

of classifier used. For example, PCA64+Bayes means that

PCA has been used to reduce dimensionality to 64, then a

Naive Bayes classifier is used.

We report results for composite features in Table III.

We combine the features in two ways: for the first set of

experiments (named Concatenated Features), we concatenate

all the features in their original form, then perform dimen-

sionality reduction and classification. In the second set of

experiments (named Concatenated PCA-reduced Features),

we concatenate all the PCA reduced features, then perform

dimensionality reduction and classification.

We use both specificity and sensitivity as performance

metrics:

Specificity =
TNs

TNs + FPs
(6)

Sensitivity =
TPs

TPs + FNs
(7)

where TNs is the Number of True Negatives, FNs is the

Number of False Negatives, TPs is the Number of True

Positives, and FPs is the Number of False Positives. The x-

and y-axis of the ROC curves in Fig. 4, are the False Positive

Rate (FPR) and the True Positive Rate (TPR), respectively,

defined as: FPR = 1 − Specificity and TPR = Sensitivity.

V. DISCUSSION

We find that raw features (Table I) perform very

well, specially for LDA+Bayes closely followed by the

shape+intensity features (Table II). The Gabor and GLCM

features do not perform poorly on their own. We also observe

that SVM shows lower accuracies than the other classifiers,

probably because we did not have a separate validation set

and used default parameters. The 5NN classifier performs

well specially when LDA is used for dimensionality re-

duction. In general, LDA+Bayes seems to show the best

performance amongst all the classifiers.

Combining the features by concatenating them boosts the

overall performance of the classifiers as shown in Table III.

Moreover, we also see that composite features substantially

boosts the sensitivity of the classifiers. A robust diagnostic

system should not only show a high accuracy, but also a high

sensitivity. This is because, while False Positive instances

can be quickly rectified by the radiologist, False Negatives

might lead to a herniated disc not being diagnosed at all,

hence posing a greater penalty. LDA+Bayes and LDA+5NN

shows the best performance, with accuracy up to 98.29% and

sensitivity upto 98.11%.

We perform a thorough feature comparison through ROC

curves in Fig. 4. To plot ROC for kNN, we vary the

threshhold from 1 to k (instead of using the majority rule)

and obtain the curves in Fig. 4. Each curve consists of five

points in our case. We find that combined features show

better ROC compared to individual ones in all the four

curves. Comparing Fig. 4(a) with Fig. 4(b), we can clearly

see that LDA as a dimensionality reduction works better than

PCA.

VI. CONCLUSIONS AND FUTURE WORK

We proposed a fully automated robust system to detect

herniated discs from sagittal lumbar MRI by first extracting

an approximate ROI (Region Of Interest) for each disc and

then using a combination of features to produce a highly

accurate classifier. We also performed a thorough analysis

of of five kinds of features i.e. raw, LBP, Normalized Gabor,

GLCM, shape, and intensity features; both individually and

combined. This leads to the conclusion that concatenating
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TABLE III

PERFORMANCE OF COMPOSITE FEATURES

Classifier
Concatenated Features Concatenated PCA-reduced Features

Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity

PCA64+5NN 92.57 99.18 77.36 93.71 99.18 81.13

PCA64+SVM 82.28 86.07 73.58 84.0 85.25 81.13

PCA64+Bayes 94.29 94.26 94.34 94.29 94.26 94.34

PCA32+LDA+5NN 96.57 95.90 98.11 96.0 95.08 98.11

PCA32+LDA+SVM 92.0 88.52 100 91.43 87.7 100

PCA32+LDA+Bayes 98.29 99.18 96.23 98.29 99.18 96.23
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(b) Using LDA for dimensionality reduction

Fig. 4. ROC curves for individual and combined features using PCA and LDA for dimensionality reduction respectively and 5NN as classifier.

and combining features gives a better accuracy and simul-

taneously pulls up the sensitivity. By avoiding an accurate

segmentation of the discs, we circumvent a complex problem

in computer vision and by extracting desirable and robust

features, we present an automatic diagnostic system showing

up to 98.29% accuracy and 98.11% sensitivity. We are

currently working on associating information from axial MRI

slices to detect and localize disc herniation. In addition, we

propose to verify our composite features on larger datasets

of lumbar MRI to prove its utility in clinical settings.
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